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ABSTRACT  

Magnetohydrodynamic (MHD) boundary layer flow for a variable viscosity fluid subject to thermal radiation and 

Newtonian heating has numerous applications in industry and engineering such as designing of cooling systems in 

electronic devices, cooling of nuclear reactors, solar energy harvesting, thermal insulation, heat exchangers and in 

geothermal reservoirs. Heat transfer by thermal radiation is of significance to engineering processes that occur at 

high temperature and plays a major role in designing of equipment used in Nuclear reactors, gas turbines and 

equipment for propelling air crafts, missiles, satellites, and rockets. In this study, we use the fourth-order Runge-Kutta 

method and the shooting technique to find the numerical solution to the equations of fluid flow governing the 

boundary layer flow of a varying viscosity electrically conducting fluid that is subjected to a constant magnetic field in 

the presence of thermal radiation and Newtonian heating. The graphical results depicting the effects of various 

thermophysical parameters on the velocity and temperature profiles of the fluid are presented and then discussed 

quantitatively. From the study, we note that the velocity of the fluid increases with the increase in the values of the 

magnetic parameter and variable viscosity parameter. Furthermore, the temperature of the fluid increases with an 

increase in the values of the magnetic field parameter, Brinkmann number and local Biot number and decreases with 

the increase in thermal radiation parameter and variable viscosity parameter.  
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_______________________________________________________________________________________________

Nomenclature 

(   )    Velocity components                                        Density 

(   )     Coordinates                                                      Stream function 

             Temperature                                                     Electrical conductivity 

            Free stream temperature                                   Dynamic viscosity 

             Constant applied magnetic field                    Free stream velocity 

             Thermal expansion coefficient                          Nanoparticle concentration 

             Local Biot number                                           Prandtl number 

            Thermal radiation parameter                             Variable viscosity parameter 

            Magnetic field intensity parameter                  Brinkmann number 

             Dimensionless temperature                                Transverse distance 

1. INTRODUCTION  

Magnetohydrodynamic (MHD) boundary layer flow and thermal radiation problems are applicable to numerous engineering and 

industrial applications such as design of cooling systems used in electronic devices, solar energy collection, design of equipment 

used in propulsion of air crafts, missiles, satellites, and hypersonic flights among many other applications. Numerous studies have 
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been undertaken on MHD boundary layer flows of fluid under various conditions. Study by Ishak [ 1 ] on MHD boundary layer 

flow over an exponentially stretching sheet subject to thermal radiation reported decrease in local heat transfer rate with increasing 

values of  magnetic and radiation parameters. In their investigation Sajid & Hayat [2] observed that the Prandtl number and 

radiation parameter had opposite effect on the temperature of the fluid on an exponentially stretching sheet. Aliakbar et al. [3] 

studying effect of thermal radiation on MHD flow of Maxwellian fluid noted decrease in temperature of the fluid with increase in 

radiation parameter and Prandtl number. The temperature of the fluid was also observed to increase with increasing Eckert 

number. Siddheshwar & Mahabaleswar [4] in conducting their study, they examined the effect of radiation and heat source on 

MHD flow of viscoelastic fluid over a stretching sheet. Makinde & Sibanda [5] in their study, they considered MHD mixed-

convective flow and heat transfer past a vertical plate in a porous medium with constant wall suction. Chamkha & Aly [6] focused 

their study on MHD free convection flow of a nanofluid past a vertical permeable plate in the presence of heat source or sink 

whereas Aziz & Khan [7] conducted examination into Natural convective boundary layer flow of nanofluid past a convectively 

heated vertical plate. Uddin et al. [8] performed their study on MHD free convective boundary layer flow of a nanofluid past a flat 

vertical plate subject to Newtonian heating boundary condition. The study by Samad & Mansur-Rahman [9] examined the 

interaction of thermal radiation and unsteady MHD flow past a vertical porous plate. The plate was immersed in a porous medium. 

Makinde & Sibanda [5] looked into MHD mixed convective flow and heat transfer past a vertical plate dipped in a porous medium 

with constant wall suction whereas Md. Anwar Hossain & Munir [10] gave analysis of a 2-D mixed convection flow of viscous 

incompressible temperature dependent viscous fluid past a vertical plate. The research conducted by Fang [11] provided analysis 

of how fluid property variation influences boundary layers of a stretching surface while Mahmoud [12] explained how varying 

viscosity affects hydromagnetic boundary layer flow a long a continuously moving vertical plate subject to radiation. The study by 

M. Anwar Hossain et al. [13] demonstrated how radiation affects free convection flow of a varying viscosity fluid on a porous 

vertical plate. Poornima & Reddy [14] using a non-linear stretching sheet, they demonstrated steady free convective boundary 

layer flow of a radiating nanofluid in the presence of transverse magnetic field. Investigations by Kandasamy et al. [15] presented 

effects of thermal stratification due to solar radiation, Brownian motion and thermophoresis on MHD boundary layer flow of 

nanofluid. Motsumi & Makinde [16] numerically investigated boundary layer flow of a nanofluid over a permeable moving flat 

plate in the presence of thermal radiation and viscous dissipation. The studies by [17-19] which were based on first law analysis 

and thermodynamic point of view examined MHD boundary layer flow with heat transfer. Narusawa [20] restricting the study on 

second law of thermodynamics presented findings on entropy generation minimization.  Bejan [21,22] basing the study on second 

law analysis in heat transfer and thermal design problems, he introduced the concept of entropy generation minimization in the 

study. The study by Makinde & Aziz [18] considered plane Poiseuille flow with asymmetric convective heat transfer. 

1.1 Magnetohydrodynamic 

Magnetohydrodynamic (MHD) was first founded by Hannes Alfvén (1908-1995). MHD as a discipline deals with the dynamics of 

conductive fluids in magnetic fields. These conductive fluids comprise of Liquid metals (gallium, mercury, and molten iron), 

plasmas (such as the solar atmosphere) and strong electrolytes. In MHD; as the magnetic field and the conducting fluid comes into 

contact, the electric current of density j is induced into the conducting fluid resulting in the induced magnetic field. The total 

field   (induced plus imposed) interacts with induced current resulting in Lorentz force      . The applications of MHD are 

broad and they include; MHD pump, MHD propulsion, metallurgy, MHD generators, and MHD flow meters. MHD micropumps 

are used as microsyringes for diabetics [23]. MHD pumps are also used in fusion research to create high impact velocities and in 

the cooling of nuclear reactors by pumping sodium coolant in the reactor core. The MHD propulsion serves as an alternative to the 

use of mechanical propellers in propelling marine vessels such as military submarines. MHD propulsion overcomes the problem of 

cavitation noise associated with the movement of propellers which is advantageous in the military where stealth is important [24, 

25]. Metallurgical applications of MHD include Electromagnetic stirring of liquid metals during the formation of alloys, magnetic 

damping, levitation of liquid metals and electrolysis of aluminium oxide to aluminium. MHD generators can work under 

extremely high temperatures compared to the traditional generators, they have no movable parts reducing chances of mechanical 

failure and they work by converting thermal or kinetic energy directly into electrical energy. MHD flowmeters can be applied in 

determining the rate of blood flow through blood vessels. The first use of MHD blood flowmeters was by Kolin [26]. In surgery 

they are used in determining amount of blood flowing in vessel before, in the course of surgery and after the surgery [27, 28]. 

1.2 Boundary layer flow 

Boundary layer in fluid flow was first introduced by Ludwig Prandtl in 1904. Boundary layer flow is of importance in determining 

friction drag of bodies moving in fluids; such as viscous drag on aerodynamics (airplanes, rockets, and projectiles such as 

missiles), hydrodynamics (ships, submarines, and torpedoes), automobiles (motor vehicles) and engineering structures such as 

buildings and bridges. A boundary layer in fluid flow can be described as a thin layer of viscous fluid just neighbouring the 

surface of the wall in which the fluid has a zero velocity at the wall/plate and a free stream velocity    far away from the plate. 

The zero velocity at the walls is due to the wetting or sticking of the fluid on the surface of the wall as a result of adhesive forces 

between the wall and the fluid. This condition is known as the ‘no-slip condition'.  The fluid above the surface of the plate is in 

motion with shearing happening between its layers.  The shear stress happening between the surface of the plate and the first 
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moving layer of the fluid adjacent to the plate is known as the wall shear stress (  ). The boundary layer thickness ( ) is a 

function of the Reynolds number and refers to the distance from the solid wall to the height above the surface of the wall where 

the velocity of the fluid is 99% of the free stream velocity   . In the boundary layer flow, the hydrodynamic and thermal boundary 

layers are of great significance. In the hydrodynamic boundary layer, the fluid velocity is zero at the plate and its value increases 

to a free stream value    far away from the plate. In the thermal boundary layer, the temperature of the fluid varies from the wall 

temperature    to the free stream value    far away from the wall. The fluid particles in contact with the solid wall acquire a 

temperature equal to that of the wall. If the wall temperature is higher compared to the rest of the fluid, the fluid particles in 

contact with the wall exchanges heat with those in the neighbouring layers leading to the development of a thermal gradient in the 

fluid. The understanding of the hydrodynamic and thermal boundary layer is of significance in fluid mechanics since velocity is an 

important component in mass, momentum and energy equations while temperature gradient in the thermal boundary layer 

influences heat transfer in the fluid. 

 

Figure 1: The boundary layer flow (Image Source: nptel.ac.in) 

1.3 Thermal Radiation 

Mechanisms by which heat energy gets transferred from one point to another are conduction, convection, and radiation. In thermal 

radiation heat is transferred in form of electromagnetic waves and it occurs at the speed of light (             ). In thermal 

radiation heat energy can be propagated through space or vacuum (i.e. does not require material medium for transmission). It is the 

fastest means of heat transfer. The total radiant energy from a heated surface is arrived at by applying the Stefan-Boltzmann law. 

The Stefan-Boltzmann law states that; the rate of outward radiative energy per unit area emitted by an object of absolute 

temperature   is proportional to the fourth power of   . Mathematically Stefan-Boltzmann law is expressed as: 

                                                                          (1.1) 

If the heated surface happens to be that of a blackbody (i.e. bodies considered to be perfect absorbers and perfect emitters), then        

ϵ =1 and equation (   )  simplifies to; 

                                                                        (1.2) 

Equation (   ) gives radiant energy per unit area of the blackbody. In equations (   ) and (   ) above,   – refers to the emissivity 

of the surface,    which is a constant (Stefan-Boltzmann constant) has a value of                          and T stands 

for the absolute temperature of the surface-expressed in Kelvin (K). Heat transfer mechanism from the sun to the earth is by 

thermal radiation. 
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Figure 2: Modes of Heat Transfer (Image source: Green-Mechanic Website) 

2. EQUATIONS GOVERNING FLUID DYNAMICS 

 2.1 The Continuity Equation 

The continuity equation is obtained by considering conservation of mass for a system that states that mass can neither be created 

nor destroyed. To arrive at the continuity equation we apply the mass conservation principle on an infinitesimal volume of the 

fluid element within a moving fluid. The equation of continuity for the differential element in the Cartesian coordinate system is of 

the form: 

  

  
 

 (  )

  
 

 (  )

  
 

 (  )

  
     Or    

  

  
   (  ⃗ )                            (2.1) 

Equation(   ) is the Continuity equation for a compressible fluid in a rectangular Cartesian coordinate system. In equation (   ) 

above   denotes density of the fluid, (     ) refers to velocity component of the fluid in (     ) directions respectively and 

  ( ⃗ ) refers to divergence of the velocity vector (i.e. the rate at which volume of a moving fluid element changes per unit 

volume.) 

                    We define      
 

  
   

 

  
  ⃗ 

 

  
                                           (2.2) 

If the flow of the fluid is steady (i.e. density does not vary with time), then  
  

  
   and equation (   ) simplifies to: 

                   
  (  )

  
 

 (  )

  
 

 (  )

  
     Or    (  ⃗ )                              (2.3) 

For incompressible flow (density is constant), the material derivative of density is zero (that is 
  

  
  ) and the continuity equation 

for incompressible flow becomes 

  

  
 

  

  
 

  

  
      Or         ( ⃗ )                              (2.4) 

2.2 Navier-Stokes (Momentum) Equation 

Navier-Stokes Equation is obtained by considering Newton’s second law of motion (        
  ⃗⃗ 

  
) 

Navier- Stokes equation for a flowing fluid is given by the equation  

  

  
 (   )  

 

 
[        ]                                  (2.5) 

Where F in the equation (   ) above represents forces acting on flowing fluid. 

If forces acting on flowing fluid are as a result of gravity, thermal expansion and the Lorentz force created by the magnetic field, 

then the Navier-Stokes equation (   ) takes the form: 

  

  
 (   )  

 

 
[        ]        

 

 
                           (2.6) 

In equation(   ) above;   denotes fluid’s velocity,   represents the density of the fluid,    stands for pressure,   denotes dynamic 

viscosity,  stands for gravitational force,   denotes thermal expansion coefficient,    represents electric current and   stands for 
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the magnetic field. If the fluid flow involves a nanofluid, then the quantities           become    ,      and     respectively 

which are defined as: 

    (   )        , 

                                                     
  

(   )    , and                                     (2.7) 

    (   )       

For a nanofluid equation (   )takes the form 

  

  
 (   )  

 

   
[        

  ]  (  )      
 

   
            (2.8) 

2.3 Energy Equation. 

The energy equation which is arrived at by applying the first law of thermodynamics (i.e. The amount of heat added to the system 

   is equal to change in internal energy    plus the amount of energy lost due to work done on the system    ) i.e.       

   ), takes the form:              

   (
  

  
  

  

  
  

  

  
  

  

  
)   (

   

    
   

    
   

   )                   (2.9) 
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)
 

 (
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In the equation (   ) above, (   ) refers to heat capacitance of the fluid, (     ) is the velocity component of the fluid in 

(     ) directions respectively,   refers to local temperature of the fluid,   is the thermal conductivity of the fluid and    is the 

heat flux. 

2.4 Magnetohydrodynamic (MHD) Flow 

If the fluid flow happens to be in a magnetic field, then equations governing such a flow are momentum equation and Maxwell’s 

equations of electromagnetism which are given as; 

                                                                                                    (2.10) 

  

  
                                                                                                 (2.11) 

   (     )                                                                                   (2.12) 

Equation 2.10 is the Ampere’s law; Equation 2.11 is the Faraday’s law and equation 2.12 is the Ohm’s law. In the above 

equations,    represents magnetic permeability,  denotes electrical conductivity of the fluid,   represents electric current density, 

  stands for electric field and   is the magnetic field. 

3. MATHEMATICAL FORMULATION 

We consider a steady 2-D MHD boundary layer flow of a varying viscosity electrically conducting fluid with heat transfer over a 

horizontal plate placed in a stream of this fluid. The fluid is at the temperature    and is subjected to the magnetic field and 

thermal radiation. The lower surface of the plate is exposed to a heated fluid of temperature     that provides a heat transfer 

coefficient   . The fluid located on the upper side of the plate is subjected to Newtonian heating and a variation in the fluid 

property as a result of temperature is limited to viscosity. A constant magnetic field    is imposed perpendicular to the flow. The 

induced magnetic field arising from flowing conductive fluid and the electric field due to the polarization of charges are 

considered negligible.  
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Figure 3: Flow configuration and coordinate system                                                                                                           

The equations of fluid flow for the above flow configuration are; 
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(    )                               (3.2) 
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(    )                                          (3.3) 

The governing boundary conditions are: 

                (   )   ,    (   )   ,     
  

  
(   )    (    (   )) 

 (   )         (   )                                                                            (3.4) 

Where (   ) denotes the fluid’s velocity in (   ) directions respectively,    refers to the free stream velocity of the fluid,    is 

the specific heat at constant pressure,    represents temperature,    is the free stream temperature of the fluid,   denotes density of 

the fluid,   denotes fluid’s  electrical conductivity,   stands for fluid’s thermal conductivity,   represents gravitational 

acceleration and   stands for fluid’s dynamical viscosity. 

The dynamical viscosity    given by equation (3.5) is an inverse linear function of temperature, [29]. 

 ( )  
  

   (    )
                                                               (3.5) 

In equation(   )     refers to the viscosity of the cold fluid and   represents a constant. From [30] the radiative heat flux 

simplifies to equation (   ) upon application of Rosseland approximation for radiation. 

    
   

   

   

  
                                                                (3.6) 

In equation (   )     refers to the Stephan-Boltzmann constant and    refers to the mass absorption coefficient. Writing     using 

truncated Taylor series about     to be a linear function of   by letting temperature difference to be sufficiently small within the 

flow: 

      
      

  .                                                              (3.7) 

Introducing the following dimensionless quantities and the stream function    

   √
  

  
,           √       ( ),       

  

 
,            ( )  

    

     
               (3.8) 

Thermal conductivity of the fluid is taken to be a linear function of temperature and is written as: 

 ( )    (   (    ))                                                 (3.9) 

The equation of continuity (   ) is satisfied by the stream function by defining    
  

  
  and    

  

  
      as follows:           
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                                                               (3.10) 

Equations (3.1) to (3.4) are solved together with their boundary conditions as follows:  

  
  

  
 

  

  
 
  

  
     ( )                                                                (3.11a) 
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    ( )                                                                    (3.11d) 
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     ( )                                                            (3.11e) 

Substituting equations 3.11 (a-e) into equation (3.2) and introducing parameters            as defined then simplifying gives 
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      (    )    (    ) (
  

  
  )                    (3.12) 

For equation (3.3) we proceed as follows: 

 ( )  
    

     
  Making   the subject gives 

   ( )(     )                                                                       (3.13a) 
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   ( )  ( )(     )                                   (3.13d) 
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  ( )(     )                                                   (3.13e) 

Substituting equations (3.13) (a-e) into (3.3) and introducing parameters       and     and then simplifying equation (3.3) 

becomes: 
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(
   

   )
 

      (
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             (3.14) 

  

The boundary conditions (3.4) are transformed as follows: 

      ( )  transforms  (   )    to 
  

  
( )    and   (   )     is transformed to 

  

  
( )   . 

   
  

  
 

 

 
     ( ( ))  transforms   (   )     to       ( )   . 

      ( )(     ) transforms   (   )     to     ( )    and 

  
  

  
(   )    (    (   )) is transformed to  

  

  
( )    [ ( )   ] 

Therefore for equations (3.12) and (3.14) the boundary conditions are: 

 ( )           
  

  
( )         

  

  
( )    [ ( )   ]       

  

  
( )         ( )               (3.15) 

 

For the absence of thermal radiation       (     )⁄  or    . In equations (3.12) and (3.14) the prime symbol denotes 

derivative with respect to   and     
   

  

   
 refers to local magnetic field parameter,             
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√

  

  
  is the local convective heat exchange parameter,     

    
 

 (     )
  denotes the Brinkmann number,    

 

 
  stands 

for the Prandtl number,     (     ) refers to the viscosity variation parameter, and      
   

     
    is the thermal radiation 

parameter. 

3.1 Numerical Solution 

Numerical solutions are obtained by solving equations (3.12) and (3.14) subject to the boundary conditions (3.15) using the fourth-

order Runge-Kutta integration scheme together with a shooting technique. The computations are performed using a MAPLE 

computer programme that uses symbolic and computational computer language MAPLE. The method entails transforming 

equations (3.12) and (3.14) that are of third order in   and second-order in    into a system of first-order differential equations. 

The system of first-order ordinary differential equations are obtained by letting  

                                                                                                      (3.16) 

Where prime denotes derivative with respect to   . 

The set of higher-order non-linear boundary value problem with their respective boundary conditions are reduced to first-order 

differential equations with appropriate initial conditions as shown below: 

                                                               
                                                                              (3.17a) 

                                                              
                                                                               (3.17b) 

  
   

 

 
(     )     

 

(     )
       (     )     (     )(    )     (3.17c) 

                                                              
                                                                                 (3.17d) 

                                               
   

 

 
        

   

(     )
  

       (    )             (3.17e) 

Subject to the initial conditions 

  ( )            ( )            ( )    [  ( )   ]        ( )      ( )           (3.18) 

 

4. RESULTS AND DISCUSSION 

Numerical computations were performed for values of the physical parameters involved namely; Thermal radiation parameter 

(  ), Prandtl number (  ), Magnetic field intensity parameter (  ), Variable viscosity parameter ( ), local Biot number (  ), and 

Brinkmann number (  ). For illustration of the results, numerical values were plotted in figure 4.1 to 4.7 and a detailed 

description of the effects of the above parameters on velocity and temperature profile was done. 

4.1 Effect of Parameter Variation on Velocity Profiles 

The graph in figure 4.1 depicts variation in velocity of fluid at different values of magnetic field parameter(  ). From the graph 

the velocity of the fluid on the surface of plate is zero and it is attributed to the no-slip condition. Increasing values of (  ) 

increases the velocity of the fluid to the free stream value    far away from the surface of the plate. Magnetic field imposed 

perpendicular to the flow generates Lorentz force in the fluid that opposes the motion of the fluid making the velocity to overshoot 

towards the surface of the plate. The graph in figure 4.2 gives velocity of the fluid at different values of variable viscosity 

parameter( ). Increasing values of  ( )  (i.e. as the viscosity of fluid decreases) leads to increase in fluid velocity as indicated by 

the figure. The decline in fluid’s viscosity makes momentum boundary layer to decrease increasing the velocity gradient of the 

fluid.  
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  Figure 4.2: Velocity profile for varying a 

 

4.2 Effect of Parameter Variation on Temperature Profile  

Graphs in figure 4.3-4.7 show variation of  ( ) for different values of             and  . From the graphs the highest fluid 

temperature occurs on the surface of the plate. The free stream temperature decreases to zero value exponentially far away from 

the surface of the plate satisfying the given boundary conditions. In figure 4.3 as values of    increases, the fluid temperature also 

increases. Magnetic field imposed perpendicular to the flow produces Lorentz force that opposes the flow of the fluid increasing 

both temperature and thermal boundary layer of the fluid. This is attributed to the increased friction in the fluid. In figure 4.4 and 

4.5 increasing values of    and    results in increased fluid temperature in the thermal boundary layer due to generation of energy 

through viscous heating and Newtonian heating. In figures 4.6 and 4.7 there is a decrease in fluids temperature followed by a 

decrease in thermal boundary layer thickness as values of both    and   increases (i.e. as viscosity of the fluid decreases). 

 

 
Figure 4.3: Temperature profile for varying Ha         Figure 4.4: Temperature profile for varying Br 

 

Figure 4.1: Velocity profile for varying Ha 
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Figure 4.5: Temperature profile for varying Bi           Figure 4.6: Temperature profile for varying Ra 

 

 

 
Figure 4.7: Temperature profile for varying a 

 

5. CONCLUSIONS 

In this study, we investigated steady 2-D MHD Boundary Layer Flow involving heat transfer over a horizontal plate in a stream of 

conducting fluid with varying viscosity at temperature    subject to thermal radiation and Newtonian heating. The model 

equations governing the flow were formulated and numerically solved using the shooting technique with a fourth-order Runge-

Kutta integration scheme. The effects of thermal radiation parameter, magnetic field intensity parameter, variable viscosity 

parameter, local Biot number and Brinkman number on the velocity profile and temperature profile of the fluid were represented 

graphically. From the result we make the following conclusions:  

i. Increase in values of magnetic parameter (  ) and variable viscosity parameter ( ) results in increased fluid velocity. 

ii. The thickness of velocity boundary layer of the fluid decreases with    and  . 

iii. The fluid’s temperature increases with increase in values of    ,  , and   . 

iv. Fluid’s temperature decreases with increase in values of    and  . 

v. Thermal boundary layer thickness increase with   ,  ,    and decrease with increasing values of     and  . 
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