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ABSTRACT  

A study on load forecasting prediction is important for efficient management of users' demands for any utility such as electricity 

and gas. Many computational intelligence approaches have been adopted for electricity load forecasts. For instance, artificial 

neural networks, traditional fuzzy neural networks, support vector machines and other intelligent methods have been adopted in 

the literature. It is well known that load forecast is an important input for management decision systems in every power supply 

organization.  Fuzzy logic systems (type-1 and type-2) have proven to be one of the effective tools for many load forecasting 

problems. In this study, interval type-2 intuitionistic fuzzy logic system equipped with membership functions, non-membership 

functions and hesitation indices is proposed for very short and short-term load forecasting for the first time. Gradient descent 

method is used to optimize the parameters of the developed model. The proposed model is compared with the traditional interval 

type-2 fuzzy logic and neural network systems. Experimental analyses reveal that the proposed model outperforms the two 

traditional systems in many load instances. 

 

Key Words: Intuitionistic Fuzzy Set, Interval Type-2 Intuitionistic Fuzzy Set, Hesitation Index, Gradient Descent Back 

Propagation. 

_______________________________________________________________________________________________ 

 

1. INTRODUCTION  

Electricity load forecasting (ELF) has formed an important aspect in power generation, distribution and transmission sectors and 

has been one of the hot topics in recent years. The distribution of electricity load to industrial, residential and commercial 

consumers has been a challenging task in the power system and as such, providing adequate load forecast is important for efficient 

and reliable functioning of the system. Load forecasting has provided support in the power system decision making in the form of 

demand scheduling, supply planning, generation reserve and more [1]. Load forecasting applications may be classified as [2], [3].  

 

• Very short-term load forecasting (VSTLF) which involves forecasting for few minutes to few hours’ time scale. 

• Short-term load forecasting (STLF) involves prediction of electricity demand over hourly/half-hourly intervals up to few days 

ahead. STLF has been one of the active ingredients in energy management systems (EMS) and is known to assist in the decision-

making process of every power system [4].  

• Medium term load forecasting (MTLF) ranges from one week up to a few months and 

• Long term load forecasting (LTLF) which can span up to a year and above [5]. In this study, analysis is done based on VSTLF 

and STLF. 

 

Many approaches have been utilized for load forecasting. Torrini et al., [6] have pointed out four of such approaches to include a) 

statistical models which are based on linear regression function capable of predicting stationary time series [7]. However, 
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statistical models often perform poorly and their prediction accuracies found to be insufficient [8], b) computational intelligence 

models which include among others fuzzy logic and neural network, c) hybrid models and d) those models used for judgmental 

forecasting. The statistical and computational intelligence models are widely adopted for load forecasting [7]. For instance, Chen 

et al., [9] proposed a least square support vector machine (LSSVM) with fuzzy time series and global harmony search algorithm 

for electric load forecasting. Whilst LSSVM was used to analyze the time series, the global harmony search algorithm was 

adopted to optimize the parameters of the model. The proposed model was shown to provide more accurate results than other 

comparative models such as autoregressive integrated moving average, and other LSSVM hybrid models. Sadaei et al., [4] 

proposed a combination of seasonal auto regressive fractionally integrated moving average (SARFIMA) and fuzzy time series 

(FTS) for short term load forecasting. The parameters of the model are updated using particle swarm optimization algorithm. The 

authors concluded that the hybrid approach outperformed many existing methods for load forecasting in terms of prediction error. 

Amin and Hoque [10] carried out a comparative load forecasting analysis between auto-regressive integrated moving average 

(ARIMA) and support vector machine (SVM). Their analyses showed that both models perform differently under certain load 

condition. Whilst ARIMA outperforms SVM under linear load type, SVM performs better than ARIMA under non-linear load 

conditions. Haq and Ni [7] proposed a hybrid model for short term electricity forecasting based on signal decomposition and 

correlation analysis approaches. The proposed model was compared with some traditional approaches and found to perform better 

in terms of prediction errors. Ma et al., [11] proposed a STLF using isolation forest (iForest) algorithm and long short term 

memory (LSTM) neural network. Comparison of the proposed model with the traditional LSTM and iForest backpropagation 

(BP) showed that the proposed model exhibited best load forecasting performance. Ouyang et al., [12] presented a STLF using 

copula model and deep belief network. Data for the experiments were collected from Texas and Arkansas, United States. 

Performance comparison was made between the proposed approach and artificial neural network (ANN), SVM, extreme learning 

machine and traditional deep belief network; and the proposed model was found to outperform these existing models. Yan et al., 

[13] proposed a STLF of smart grid based on load spatial-temporal distribution (LSTD) with LSTM. Two cases BP-, SVM- under 

LSTD are set up to compare with the proposed LSTM version. Analysis of the study revealed that LSTM for STLF based on 

LSTD provided improved performance in comparison to BP and SVM. Chen et al., [14] and [15] presented a STLF with deep 

neural network. In Ryu et al., [16], demand side STLF is proposed based on deep neural network (DNN). Demand side hourly 

load data for the experiment was obtained from Korea Electric Power Corporation (KEPCO) which included individual customers 

electricity consumption data and regional meteorological elements. 

 

However, because load data is uncertain, statistical models and some computational approaches such as neural networks (NN), 

SVM, genetic algorithm and others may not be able to cope with these imprecise and vague information as standalone systems. 

According to [12], the statistical approaches based on simple regression functions may not be effective in modeling nonlinear 

characteristics. According to Haq et al., [7], load demand generally is non-stationary and exhibits non-linear features. Although 

ANN works well with nonlinear systems, they are often found to converge slowly and may get trapped in local minimum. Another 

difficulty encountered with neural network however, is that its prediction dynamics cannot be explained and as such is 

incomprehensible to the human users who require understanding of how the conclusion is reached especially in real world 

applications. In this way, integration of fuzzy logic methodologies has been adopted. A technology that has therefore boosted and 

paved the way for effective utilization of ANN is the marriage of fuzzy logic theory and ANN. These combinations have been 

adopted by researchers to solve many real-world problems in diverse domains and magnitude. In the literature, fuzzy logic and 

ANN are found to be universal approximators and can approximate any nonlinear relationship to any arbitrary accuracy [17]. 

Whilst fuzzy logic handles the reasoning with imprecise and uncertain data, ANN handles the learning and generalization ability. 

According to Khosravi et al., [17] the integration of fuzzy logic systems and artificial neural networks provides an excellent 

alternative for prediction, modelling and forecasting. Fuzzy set (FS) of type- 1 introduced by Zadeh [18] has been used 

extensively for modelling uncertainty in many applications such as load forecasting with encouraging results. For example, 

Torrini et al., [6] proposed a long-term forecast for electric consumption in Brazil based on type-1 fuzzy logic system. The fuzzy 

logic model was found to produce accurate results when compared with official projections. Akarslan and Hocaoglu [3] employed 

adaptive neuro-fuzzy inference system (ANFIS) for STLF with data collected from Cay vocational high school campus area of 

Afyon Kotatepe University. The authors concluded that ANFIS approach gave good forecasting results even though comparison 

was not made with other existing approaches. Other studies integrating fuzzy logic for load forecasting include [19], [20], [21], 

[22]. However, FLSs of type-1 such as ANFIS are described only by membership functions where the uncertainty disappears 

immediately the output value is chosen. This deficiency in type-1 FS led to the introduction of type-2 FS in [23], which is an 

extension of the type-1 FS. Since then, there has been an upsurge in the use of type-2 FS to solve many real-world problems 

including load forecasting. For instance, Khosravi et al., [17] proposed a TSK-IT2FLS for STLF. The aim was to manage 

uncertainty in the load data with improved prediction. Analysis of findings showed that IT2FLS-STLF outperformed its type-1, 

and traditional neural networks in terms of prediction accuracy. Umoh et al., [24] applied IT2F neural network (IT2FNN) for short 

term electric load forecasting using historical data obtained from Power Holding Company of Nigeria (PHCN) and Nigeria 

Meteorological Agency (NMA). The experimental studies showed that the IT2FNN outperformed type-1 FLS. Type-2 FS are 
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found to outperform type-1 FS in many applications because type-2 FSs have membership functions that are both type-1 FS 

(fuzzy membership functions). Type-2 FS is a 3-dimensional FS and may be represented either as general type-2 FS (GT2FS) with 

different weights on the third dimension or interval type-2 FS (IT2FS) where the third dimension takes the value 1 (equally 

weighted). Type-2 FS with fuzzy membership functions comes with additional design degrees of freedom which gives it an edge 

over the type-1 FS with the possibility to directly model uncertainties [25]. Both the type-1 and type-2 forms of the traditional FS 

are well defined by their membership functions only. In other words, to obtain the non-membership function of a traditional FS 

requires obtaining the complement of the membership functions. This may not generally fit into real world situations. Another 

widely used extension of FS is the intuitionistic FS (IFS) introduced by Atanassov in 1986 [26]. IFS, unlike the classical FS has 

both membership and non-membership functions that are independent of each other. One of the unique things about IFS is the 

presence of the hesitation degree (index). As obtained with the type-1 FS, the IFS with singular membership and non-membership 

functions may not adequately model uncertainty in many real-world applications. On this premise, Eyoh et al., [27] proposed a 

rule-based interval type-2 intuitionistic fuzzy logic system (IT2IFLS) with fuzzy membership and non-membership functions and 

applied it to solve nonlinear system predictions. Many other researches have been conducted successfully using IT2IFLS. For 

instance, IT2IFS have been utilized for identification and prediction problems [28], [29], transportation problem [30], clustering 

[31], time series [32] [33], image segmentation [34], regression [35], [36], [25] with promising results. In this study, IT2IFLS is 

adopted for both very short-term load forecasting (IT2IFLS-VSTLF) and short-term load forecasting (IT2IFLS-STLF) for the first 

time. The major contribution of this research is the forecasting of electricity load for the first-time using membership and non-

membership functions that are themselves fuzzy. Another important contribution is the integration of hesitation index in the 

forecasting apparatus which is often neglected in load forecasting analysis. The hesitation index is a part of everyday language 

representation and tends to bring experimental analysis closer to natural language in the best possible way. It is interesting 

therefore to study the concept of load forecasting in the context of a hesitation enabled-fuzzy logic of type-2 and compare 

performances. 

 

To the best knowledge of the authors, IT2IFLS with membership functions, non-membership functions and hesitation indices has 

never been adopted for the forecasting of electricity load demand. The remaining part of the paper are as follows: Section 2 

discusses intuitionistic fuzzy set (type-1 and type-2), interval type-2 intuitionistic fuzzy logic system and parameter update rule for 

IT2IFLS. In Section 3, the dataset used in the analysis is described with performance evaluation in Section 4. The study is 

concluded in Section 5.  

 

2. INTUITIONISTIC FUZZY SET  

Definition 1: An intuitionistic fuzzy set is identified by its membership function and non-membership function:      = 

{       ( )     ( )       } with hesitation index ( ) such that     ( )       ( )     [26]. 

where the function: 

      ( )            is the degree that      and this represents the membership function of element  . 

and the function: 

    ( )            is the degree that   is not in   and this represents the non-membership function of element  . For IFS, 

      ( )      ( )    . The hesitation index of element,    defined as  ( ) is such that    ( ) = 1 – (   ( )      ( )). 

Obviously, 0      ( )     . This measures the degree of hesitancy of the expert in the specification of the belongingness of the 

element   to the IFS     

 

2.1 Interval Type-2 Intuitionistic Fuzzy Set (IT2IFS) 

Definition 2: An IT2IFS,  ̃* is characterized by membership functions (lower and upper) and non-membership functions (lower 

and upper) defined as { ̅ ̃  (x),   ̃ (x) } and {  ̃  (x),   ̃  (x)} respectively for all x     with constraints: 0   ̅ ̃  (x), +   ̃  ( )  

  and 0    ̃ (x) +   ̃  (x),     [31]. Both the membership and non-membership functions of IT2IFLS can be represented on a 

two-dimensional plane which makes computation easier and manageable. An IT2IFS is defined by two type-1 fuzzy membership 

functions and two type-1 non-membership functions, hence two footprints of uncertainty (FOU) suffice, one for membership 

function and the other for non-membership function [27] (see Fig. 1) as shown below: 

    ( ̃ )  ⋃    ̃ ( )      ̅ ̃ ( )]   (1) 

    ( ̃
 )  ⋃    ̃ ( )      ̅ ̃ ( )]   (2) 
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Figure 1: Plot of IT2IFS [27] 

Equations (1) and (2) represent FOUs for membership and non-membership functions respectively. 

Two IF-indices used in this study are the IF-index of center and IF-index of variance [27] as below: 

    c(x) = max (0, (1- (  ̃  (x) +   ̃  (x))))    (3) 

    var(x) = max (0, (1 – ( ̅ ̃ (x) +   ̃  (x))))    (4) 

    var(x) = max (0, (1- (  ̃ (x) +   ̃  (x))))    (5) 

2.2 Interval Type-2 Intuitionistic Fuzzy Logic System 

As with the traditional FLS, the IT2IFLS consists of four major computing blocks namely; intuitionistic (fuzzifier, rule base, 

inference engine and output processing (type reducer + defuzziffier)). Working with any fuzzy system involves first reducing the 

external inputs into fuzzy inputs. This is achieved using the fuzzifier. The inputs are translated into IT2IFS using intuitionistic 

fuzzifier. Here Gaussian membership and non-membership functions are adopted. The Gaussian function is well known for its 

smoothness and differentiability at all points and has been a popularly used function in fuzzy system applications. The 

intuitionistic Gaussian membership and non-membership functions are defined as follows: 

 ̅   (  )      ( 
(       ) 

      
 )  (        (  ))    (6) 

    (  )      ( 
(       ) 

      
 )  (        (  ))    (7) 

      (  )  (           (  ))   ̅   (  )                   (8) 

 ̅  ((  )  (     ̅      (  ))      (  )         (9) 

 

where πc is the hesitation degree for the center and πvar is the hesitation degree for the variance. The premise parameters  , σ2, σ1 

together with πc and πvar are used in the antecedent for the definition of membership and non-membership functions of IT2IFS. 

The intuitionistic fuzzy inputs are further combined to generate rules in the rule base which activate the inference engine. 

IT2IFLS-TSK rule may be represented as: 

Rk : IF x1 is  ̃  
   and x2 is  ̃  

   and · · · and xn is  ̃  
   THEN pk = w1kx1 + w2kx2 + · · · + wnkxn + bk   (10) 

 

where  ̃  
   are IT2IFS and pk is the output of the kth rule. The generated intuitionistic fuzzy output sets are then type-reduced and 

defuzzified to obtain the final crisp output of a T2IFLS. 
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Figure 2: IT2IFLS [36] 

 

Often the Karnik-Mendel iterative type-reduction procedure is employed to reduce T2FS to T1FS. However, going through the 

type reduction procedure is very tedious and computationally expensive [37]. Many algorithms have been developed which 

circumvent the type-reduction procedure and directly compute the output of an IT2FLS. Among such approaches are Begian-

Melek-Mendel (BMM) output procedure [38], Nie-Tan [39], Wu and Tan [40] to mention but a few. This study adopts and 

modified the direct output computation in [38] for IT2IFLS as below: 
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which represent the firing magnitude for lower membership, upper membership, lower non-membership and upper non-

membership functions respectively. The parameter β in (11) is defined by the user to scale the membership and non-membership 

contributions in the final output and is defined such that, 0 ≤ β ≤ 1. Obviously, if β = 0, the outputs of the IT2IFLS is contributed 

only by the membership function and if β = 1, output is formed by the non-membership function only, otherwise both functions 

contribute to the final output. 

 

2.3 IT2IFLS Parameter Update using Gradient Descent 

 

The IT2IFLS-VSTLS and STLF presented here are minimization problems with the aim of minimizing the cost function which is 

defined as in (16) for a single output. 

 

   
 

 
(    )      (16) 

 

where    represents the actual output and p is the predicted output of IT2IFLS. The update rules based on GD are represented as 

in (17) to (21): 

 

   (    ) =    ( )    
  

    
    (17)  

 

  (    ) =   ( )    
  

   
   (18) 
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   (    ) =    ( )    
  

    
   (19) 

     (    ) =      ( )    
  

      
   (20) 

     (    ) =      ( )    
  

      
   (21) 

where γ is the learning rate, w; b are the parameters of the consequent parts and c; σ1; σ2 are parameters of the antecedent parts. 

The adjustments of the consequent parameters of IT2IFLS are as follows: 
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where    is the output of the     rule. The updates for the center and standard deviations of the IT2IFLS are computed as follows: 
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The derivatives for the non-membership functions are 
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The parameter,  , is adjusted as follows: 
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3. DATASET DESCRIPTION    

The dataset for the analysis is obtained from Australia’s National Electricity Market (NEM) [41] which comprises five regions 

namely: New South Wales (NSW), Victoria (VIC), Queensland (QL), Tasmania (TAS) and South Australia (SA) electricity load. 

The data collected range from 1st of January to 31
st
 of December, 2018 on half hourly basis. There are four seasons in Australia 

namely; 1) Summer which falls between December and February, 2) Autumn which is between March and May, 3) Winter which 

falls between June and August and 4) Spring which is between September to November. The data is collected for each region and 

partitioned into the four seasons. Shown in Figures 3 to 7 are boxplots of the monthly load demand for each region. The boxplots 

give a holistic overview of the load demand in the different regions. As shown in the figures, the load demand increases 

significantly between the months of June and August in most of the regions which is the winter period in Australia. For the 

analysis of the load demand, the electricity load is modelled as a time series. In order to maintain an up-to-date forecasting, the 

current value of the time series is used as part of the input vector. By using the input generating vector:   ( )  (   )    (  

   ) , where   is the input size with      , this study employs four previous loads and current value as inputs into the model 

in order to predict one-step ahead of the time series on a half-hourly basis denoted by  (     ) in the first example. The previous 

values help to keep track of the trend in the series. Thus, the VSTLF is a half-hourly prediction. The second instance of the 

forecasting is on a short term (one-day) forecasting horizon (STLF). Thus, with the same input vector, the output vector becomes 

 (    ) equivalent to 24 hours. Before fuzzification procedure, the data are normalized using the min-max normalization as 

shown in (35).  

 

     = 
 ( )    ( )

   ( )     ( ) 
       (35) 

 

where  ( )  (  = 1, 2, …,  ) is the set of time series with N instances,    ( ) and    ( ) are the minimum and maximum values 

of column data respectively. The generated dataset,      is the normalized data fed into the IT2IFLS. With the min-max 

normalization, the features are scaled to lie in a narrow range between 0 and 1. IT2IFLS is an integration of type-2 intuitionistic 

fuzzy logic and neural network. Literature shows that neural networks work best when the features are scaled to a small range 

between 0 and 1. As shown in Figures 3 to 7, the values of the load range from 0 to tens of thousands. Normalizing the values 

ensures that such large values do not overshadow the smaller values, leading to poor performance.  Figure 8 shows the flowchart 

of the IT2IFLS load forecast process. 

 

 
Figure 3. NSW load demand    Figure 4. Victoria load demand 
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Figure 5.  QL load demand     Figure 6. Tasmania load demand 

 

 

 
      Figure 7. SA load demand 
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     Figure 8. Flowchart of IT2IFLS load forecast  

 

4. PERFORMANCE EVALUATION 

 

The performances of IT2IFLS-VSTLF and IT2IFLS-STLF are measured using three most popular metrics for load forecasting 

namely: mean absolute error (MAE), symmetric mean absolute percentage error (SMAPE) and root mean squared error (RMSE) 

defined as: 

MAE =  
 

 
∑        

        (36) 

where   is the total number of observations. 

 

RMSE = √
 

 
∑ (     )  

       (37) 

 

SMAPE = 
 

 
∑

       

(        )  

 
           (38) 
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4.1 Half-Hourly Forecasting - Very Short-Term Horizon 

For the first instance, very short-term forecasting horizon is adopted. This implies that the forecasting is on half-hourly basis. For 

each of the regions, the data is modelled as time series. For simplicity, we adopt the current value and four previous values. Thus, 

the forecasting function is represented as:  ( (   )   (   )   (     )   (     )   ( )   (     )) where  (     ) is the 

output to be predicted. For a meaningful and objective prediction, all experiments are repeated 10 times (10-fold cross validation) 

with 100 epochs each and the average results computed. For comparison, IT2FLS and ANN are also constructed to evaluate the 

performance of IT2IFLS. The ANN is adopted because it forms part of the building block of these fuzzy logic systems. The ANN 

is implemented in MATLAB using neural network toolbox. The hidden neuron is set to 5 with one output neuron. For a fair 

comparison, the GD is also adopted to tune the parameters of the ANN and IT2FLS. Shown in Table 1 to 5 are the averages of 10 

runs of each model using the different performance metrics for each region. As shown in the tables, IT2IFLS performs best overall 

in most instances than ANN and traditional IT2FLS. However, for the VSTLF horizon, ANN exhibits improved performance in 

forecasting three instances than the fuzzy logic approaches in terms of SMAPE as depicted in Tables 1 and 2. ANN performs 

better with reduced SMAPE during Spring in NSW-VSTLF, summer and spring seasons in VIC-VSTLF. It is interesting to also 

observe that in some cases such as during autumn in NSW and autumn in Victoria regions, the traditional IT2FLS with no 

hesitation degree outperforms hesitation-enabled IT2IFLS. This goes to show that in some cases, the simpler traditional IT2FLS 

may forecast better than the complex IT2IFLS. 
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4.2 A Day Ahead Forecasting - Short Term Forecasting Horizon 

Next, the different datasets are analyzed based on short term forecasting horizon i.e. one-day ahead load forecasting. The input 

generating function is given as:  ( (   )   (   )  (     )  (     )   ( )  (      )) where  (      ) is the output to 

be predicted. Similar to VSTLF, 10 runs of the experiments are conducted and the average computed. The performance of 

IT2IFLS is compared with those of ANN and traditional IT2FLS and the results presented in Tables 6 to 10. As indicated in the 

tables, IT2IFLS outperforms traditional models such as ANN and IT2FLS in almost all the instances during the STLF. This is an 

indication that the presence of non-membership functions and hesitation indices provide IT2IFLS the capacity to adequately 

predict the load as closely as possible to the real values. Interestingly, it is observed that with increasing time horizon, IT2IFLS 

tends to be more robust than the traditional IT2FLS in these forecasting instances. 
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5. CONCLUSION 

This study presents the analysis of load forecasting for the first time using IT2IFLS. Electric load data in the year 2018 obtained 

from AEMO are investigated. For objective evaluation of the model, comparison is made with traditional models such as ANN 

and IT2FLS on the same problem instances. From the tables, it is shown that the prediction results of IT2FLS tend to be close to 

those of IT2IFLS while IT2FLS performed better in very few instances. However, in the overall, IT2IFLS with membership 

functions, non-membership functions that are fuzzy and with hesitation indices outperforms both ANN and IT2FLS with reduced 

RMSE, MAE and SMAPE. We conjectured that the integration of the non-membership functions provides IT2IFLS with 

additional degrees of freedom to model uncertainty in electricity load better than the traditional IT2FLS. In addition, the hesitation 

indices bring the representation very close to the everyday human language and reasoning with improved accuracy. It is also 

demonstrated here that with increasing forecasting time scale, IT2IFLS becomes more robust than the traditional IT2FLS and 

ANN. In the future, we intend to explore the general IT2IFLS with other learning algorithms such as particle swarm optimization, 

simulated annealing and extended Kalman filter. 
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