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ABSTRACT  

Concrete infrastructures that make up the sewer system exposed to sewer wastewaters are often subjected to microbial corrosion. 

The activity of sulfur-oxidizing bacteria Acidithiobacillus sp leads to the formation of biogenic sulfuric acid. The biogenic sulfuric 

acid plays a very vital role in sulfate attack on concrete leading to loss of concrete mass and deterioration.  This paper presents 

the results of a laboratory study of concrete biodegradation by the activity of SOB A.thiooxidans. Concrete samples were 

immersed in real sewer wastewater under laboratory conditions for 14 months. Changes in chemical composition, weight loss, 

and sulfate concentration variation in the laboratory sewer were investigated. The influence of biogenic sulfuric acid on 

biocorrosion of concrete samples was determined in terms of weight loss, formation of corrosion by-products and bioleaching of 

Ca and Si ions leachates. The weight loss varied in the range 0.031 – 0.263 mm/yr. Changes in sample morphology and by-

products formed were observed by X-ray diffraction and SEM methods. The results of morphologic changes showed the formation 

of gypsum and ettringite with corrosion progression. 
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_______________________________________________________________________________________________

1. INTRODUCTION  

The term microbiologically influenced corrosion (MIC) describe the increase in corrosion activity due to the presence and action of 

bacteria (Dexter, 2003). Processes that lead to deterioration and destruction of non-metallic materials due to the metabolic activity 

of micro-organisms are often referred to as biodeterioration. (Cwalina, 2014). Microbial induced corrosion (MIC) is considered to 

be a surface phenomenon as it influences the electrochemical processes actively and adversely affects the integrity of a metallic 

substratum. In understanding the mechanism of biocorrosion, the abundance and activities of micro-organism on the surfaces and in 

the bulk phase of the fluid is of key importance. (Geesey and White, 1990)  

Microbial Induced Concrete Corrosion” (MICC) is a process whereby biogenic acid producing microorganisms accelerate the 

biodeterioration of concrete (Ma et al, 2010).Biodeterioration of concrete elements results from their exposure to corrosive 

environments of soil, water, wastewater, and waste products. This results in deterioration in appearance, performance and 

functionality of buildings and structures. (Griffin et al., 1991; Paajanen et al. , 1994;  Gaylarde and Morton, 1999;  Saiz-Jimenez, 

2003;  Sanchez-Silva and Rosowsky, 2008). Biogenic sulphuric acid has been identified as a corrosive agent not only in 

wastewater treatment systems but also in corroding sewers (Idris et al, 2001:, Vincke, et al, 1999).   

In concrete sewer systems, corrosion proceeds via a series of steps involving micro-organisms (Islander et al, 1991, Vollersten et 

al, 2008). The biodeterioration process is initiated by the chemical lowering of the alkaline pH of the moist concrete surfaces to a 

more neutral pH by carbonation. This initial step is followed by the colonization of the concrete surface by a variety of 

neutrophilic sulphide oxidizing bacteria and fungi. This process leads to the oxidation of the reduced sulphur compounds to 

dissociated sulphuric acid. The last step is characterized by the pH of the concrete surface falling below 2 as acidophilic 

organisms especially A.thiooxidans becomes dominant bacteria. The biogenic sulphuric acid produced by A. thiooxidans reacts 

with the surface of the concrete forming corrosion by products ettringite (3CaO.Al2O.3CaSO4. 32H2O) and gypsum 

(CaSO4.2H2O). (Okabe et al, 2007, O‟Connell et al, 2010, Roberts et al, 2002). The aim of this study was to simulate real sewer 

conditions in a laboratory reactor to study the processes of MICC in sewer systems. 
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2.0 MATERIALS AND METHODS  

2.1 SAMPLE COLLECTION 

 Sewer wastewater used in the study was obtained from a 10 year old sewer chamber within the Edepie community of Yenagoa 

metropolis. Samples were collected in 10L sterile container and transported to the laboratory. Samples were stored at 4
o
C prior to 

analysis. All chemical reagents used were of analytical grade. Corrosion experiments were performed in the Chemical engineering 

laboratory of the Niger Delta University. 

2.2 CONCRETE COUPONS 

Concrete coupons were prepared according to Eurocode standard (BS 1377: 1975) for concrete works for sewer systems. Form 

works were constructed with marine boards in the structural laboratory of the department of Civil Engineering Niger Delta 

University, in compliance with BS 1881-109:1983. The cement used during the course of this study was limestone Portland 

cement with a grade of 42.5. This grade was chosen because it is the most commonly used cement for construction in Nigeria. The 

prepared concretes samples were cured in a curing tank for a total of 28 days in compliance with standards above.  The 

dimensions were approximately 50mm X 50mm X 50mm (length X width X thickness).  The prepared concrete slabs were 

subjected to active MICC conditions.  

2.3 LABORATORY EXPERIMENTS  

To create and mimic conditions in a laboratory scale bio-sewer system, the system was properly insulated and made airtight 

enough to limit the dissolved oxygen concentration to create the sewer conditions for biogenic H2S production and ultimately 

biogenic sulfuric acid. Increased air flow and water flow into the sewers may prevent these processes hence the sewer vents were 

further plugged to reduce dissolved oxygen (DO) concentration in the sewer system. The prepared coupons were subjected to 

active MICC conditions using real sewer wastewater sourced from a 10 year old sewer chamber with an initial water pH of 7.8. 

Growth of micro-organism, sulfate concentration and pH was monitored. The lab scale sewer was operated under cycles of 

anaerobic and aerobic conditions to simulate conditions in real sewer environment. 

Laboratory experiments proceeded by immersing the concrete samples into real sewer waste water for 14 months. The raw sewer 

wastewater parameters tested are presented in Table 1. pH value of wastewater was 6.87. The presence of sulphur-oxidizing 

bacteria Acidithiobacillus thiooxidans, heterotrophic bacteria and fungi was confirmed in the wastewater. The bacteria mentioned 

are responsible for the start and the course of biogenic sulphate attack (MICC) on the concrete samples. To provide an external 

source of energy and electron donor for the acidophilic micro-organisms, 2.5mM of thiosulphate solution was added to the sewer 

water (Mori et al, 1992). The pH was adjusted to 4.0. At time intervals, subsamples were withdrawn for SO4 
-2

 measurement and 

microbial count analysis. 

2.4 SAMPLING 

2.4.1 Scanning electron microscopy SEM/XRD- Concrete coupons were periodically weighed and analyzed for corrosion 

by-products using SEM/XRD techniques. The changes in the concrete structure were monitored by XRD using Rigaku Miniflex 

600 by Rigaku Co-operation Japan. Scanning electron microscopy was done using Phenom ProX by Phenom World Eindhoven 

Netherlands.  

2.4.2 Chemical analysis- The pH of the laboratory sewer reactor was measured using a portable pH meter. For the 

determination of SO4 
2-

, within the sewer wastewater samples were periodically withdrawn filtered and analyzed following APHA 

Standard Methods for Examination of Water and Wastewater, (APHA 1998) 

2.4.3 Weight loss- Corrosion experiments were performed in model laboratory conditions simulating real sewage systems. 

Weight changes of concrete samples were determined by gravimetric analysis of corroded concrete. Surface precipitates (e.g., 

gypsum) were removed with a mild brush, the coupons were then dried in an oven at 80°C for 3 days, transferred to a chamber 

kept at a humidity of 100% for 24 h, and then weighed. To obtain the weight loss, the mass of the concrete coupons obtained after 

exposure to sewer system was subtracted from the mass of the concrete coupons before biogenic degradation. The weight loss can 

be calculated by the expression below; 

 

                (1) 
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Where Wo and Wi are the weight loss for concrete coupons before and after biogenic degradation. 

After obtaining the weight loss data, the corrosion rate was calculated using the equation below 

                                                                                                                      (2)     

Where: 

CR = corrosion rate in mm/yr. 

W = weight loss in grams 

A = area of specimen, inches
 

T = exposure time, hr. 

D = density of specimen, g/cm
3 

 

3.0 RESULTS AND DISCUSSION 

The chemical properties of the raw sewer waste water used in this study is presented in Table 1. 

TABLE 1: Chemical analysis of raw wastewater samples. 

 

Parameter  (mg/l)  

pH  

total suspended solids 

6.87    

15.46 

Conductivity 2582    

Total amount of phosphorus  

Sulfate (SO4) 

3.87   

79.93 

Nitrate  46.63    

Ammonia nitrogen  202    

Biological Oxygen Demand BOD5  549.14   

Chemical Oxygen Demand COD    1481.99   

 

COD of the raw wastewater was measured as 1481.99 mg/l giving an estimate of organic matter present in a liter of sample sewer 

water. The BOD value was also estimated at 549.14 mg/l. concentration of oxygen required for biological activities. The 

treatability of the wastewater measured as a concentration of ammonia in solution was estimated at 202 mg NH4/l, with a nitrate 

value of 46.63mg/l.  Phosphorus measured as orthophosphate was estimated at 3.87 mg/l. This is an indication of nutrient 

availability for algal growth. TSS concentration was quantified (15.46 mg SS/l) at pH of 6.87 of raw wastewater. Sulphates 

concentration measured (79.93 mg/l) indicates the activities and presence of sulfur utilizing bacteria in the raw wastewater. See 

table 1 above. 

 

3.1 MICROBIAL INDUCED CONCRETE CORROSION 

Raw concrete coupons when initially produced have a pH of 11-12. Once immersed in the sewer water the surface pH is lowered 

by a series of chemical and biological processes taking place on the concrete surface. The pH is lowered to a pH of about 9, a 

point where it becomes favourable for bacteria to colonize the surface using H2S and oxygen as sources of energy to produce 

biogenic sulfuric acid. The sulfuric acid produced reacts with the concrete minerals leading to biodegradation. (Islander et al, 

1991; Okabe et al, 2007). 

The concrete pH was 12 before immersion into sewer wastewater environment of pH 6.87. Reaction of the concrete and 

components of the sewer environment already containing SOB bacteria and concrete degradation by-products caused an increase 

in the pH of the concrete-sewer environment to a pH of 7.2 within the initial 60 days. The isolation and characterization of 

microbes identified the predominant acidophilic SOB in the sewer water as Acidithiobacillus thiooxidans (T. thiooxidans). No 

significant loss in the weight of the concrete coupons was observed during the initial 60 days due to slow growth of the SOB and 

neutralization reaction on the concrete surface.  

http://www.ijasre.net/
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3.3 SEM AND XRD ANALYSIS 

SEM images together with the EDAX results gave a picture of how the concrete base materials were modified during the course 

of study. The results showed patterns of silicate and carbonate aggregates embedded in the concrete matrix.  

 

      
Figure 1:  SEM AFTER 14 MONTHS                          Figure 2: XRD AFTER 14 MONTHS            

The element distribution showed the cement matrix to be dominated by high concentration of calcium and silica atoms as 33.72% 

and 2.45% respectively.  Low abundance of Al, Fe, Sulfur and magnesium was also recorded.  After 80 days of immersion in the 

raw sewer water, an increase in calcium level to 68.79% and silicon to 7.16% was observed. The crystals identified to be present 

in the raw concrete before MICC are: portlandite, quartz, calcite, biotite and microcline. The intensity of the portlandite was 2500 

at 18
o
, 35

o
, 47

o
 and 52

o
. The quartz crystals had a maximum intensity of 5800 at 26

o
. Calcite had a maximum intensity of 3900 at 

29
0
 with Biotite crystals having a maximum intensity of 5800 at 26

o
.  After an initial 80 days period crystals of quartz, calcite and 

portlandite were still present in the concrete. Due to the slow rate of concrete solubilization, the intensity and presence of the 

identified crystals remained relatively unchanged. 

 

3.4 CORROSION PRODUCTS 

Biogenic acid degradation of concrete materials leads to the formation of corrosion by-products gypsum (CaSO4) and ettringite 

(3CaO.Al2O3.CaSO4. 12H2O). Results of XRD analysis on the concrete samples after 14 months indicated the presence of 

ettringite (3CaO.Al2O3.CaSO4. 12H2O) a corrosion by-product and surface precipitate. Ettringite is a crystalline compound 

formed by cement hydration and biogenic sulfuric acid attack on the concrete. The ettringite once formed increases the internal 

pressure of the concrete due to its large volume leading to the formation of micro and macro cracks. (Aviam et al, 2004, Wei et 

al, 2013). The formation of corrosion by-product has been reportedly dependent on the pH.  Mori T, et al. (1992) reported the 

dependence of formation of crystals on the sewer pH (pH <3 for gypsum and pH>3for ettringite). In deeper sections of the 

concrete coupons under acid attack it has been observed that only limited amounts of ettringite is formed as long as the pH is 

high enough to maintain its stability. (Skalny et al, 2002).  Similar observation of ettringite inability to survive under acidic 

conditions was observed in this study.  

Figures 1 and 2 shows the formation of gypsum on the concrete coupon. Parker (1945) described gypsum as a white putty-like 

deposit, moist, flaky and is easily removed from the concrete surface.  Davis et al, 1998 described gypsum as a „white mushy 

substance with no cohesive properties and has the consistency of a cottage cheese‟. Reactions of cement hydration products 

and the biogenic sulfuric acid in sewers produces gypsum.  

Gypsum was produced on the surface of concrete materials at pH levels below 3. The formation of gypsum is considered to be 

one of the primary mechanisms involved in the biogenic acid corrosion of concrete leading to a loss of cohesion in cement 

compounds (George et al, 2012, Hewayde et al, 2006, Mori et al, 1992). The gradual formation and build-up of gypsum in the 

cement matrix is believed to act as a barrier and provides a protective layer for the concrete preventing further penetration of 

http://www.ijasre.net/
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biogenic acid into the concrete hence slowing the attack and the biogenic deterioration process. Removing this layer further 

exposes the concrete to acid attack thus accelerating the corrosion damage to the surface.   (Rendell and Jauberthie, 1999). 

However, it has been reported that the rougher surface area formed by the gypsum leads to a higher surface area exposed to 

biogenic acid attack. (Vollertsen, et al 2008).  

3.5 CORROSION RATE 

Biogenic corrosion of concrete in sewers is a very slow process with corrosion rates ranging from 1mm/yr to 5mm/yr requiring 

several years for corrosion to take place. This study was performed by creating optimal conditions for bacterial growth that may 

not always be present in real sewer systems so as to accelerate the corrosion rates. This study differs from the typical laboratory 

approach in the way real sewers wastewater was used. Additionally the use of thiosulphate solution as a source of energy for the 

acidophiles as against the direct bubbling of H2S gas through the sewer as reported in studies (Guitterez-Padilla et al, 2010, Mori, 

et al, 1991). A comparison of the corrosion rates observed in this study to that observed in several others is presented here-in. 

TABLE 2: Corrosion rates in laboratory and Field studies 

S/N Site Corrosion rates (mm/yr) Author 

1 Lab 0.08 - 0.208 Guiterrez-padilla et al,2010 

2 Lab 1.6 - 4.3 De-ballie et al, 2000 

3 Lab 0.031- 0.263 Present study 2020 

4 LAB 2-3 Jiang et al, 2014b 

5 Lab 0.18-2.19 Nnadi and Lizarazo-Marriaga, 

2013 

6 Lab 16  AϵSoy et al, 2002 

7 Field 4.3 – 4.7  Mori et al, 1992 

 

Concrete weight loss was determined as a parameter to judge concrete deterioration. Weight loss measurements showed an 

increase in concrete weight at the beginning of the study due to liquid saturation in the internal concrete pores; this provided for an 

increase in the internal pressure of the concrete. During this initial stages of exposure to the sewer wastewaters, there were no 

significant difference in parameters that could be related to MICC biodegradation. When further exposed to sewer environment 

with sulfate and biogenic acidophilic micro-organism, weight loss of the concrete was observed. Biogenic corrosion of concrete 

samples has been previously characterized by the weight loss method (Gutiérrez-Padilla et al. 2010,). Sand, et al. (1997) corroded 

test blocks by periodically spraying with Thiobacilli cultures; it was observed that severely corroded specimens had a weight loss 

of almost 6% after 15 months exposure to the bacterial cultures.  (Sand et al, 1997). Sewage flow in sewer systems accelerates the 

rate of concrete corrosion as a result of the removal of deteriorated and corroded material from the concrete surface thus exposing 

new surfaces to corrosion (Wei et al, 2013). The recorded low corrosion rates in this study can be as a result of the semi-batch 

operation of the sewer reactor compared to flow systems.  

3.6 CHEMICAL COMPOSITION VARIATION  

The variations in the chemical composition of concrete before and after corrosion was observed and presented in Figure 3. As 

shown in the Figures, there was a marked variation in the chemical composition of the concrete with time. However there was a 

decrease in calcium ion concentration and an increase in silicon ions after exposure to sewer environment for 14 months.  

http://www.ijasre.net/
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Figure 3: Concrete chemical composition variation with time. 

Biocorrosion of the concrete led to a significant decrease in calcium ion as a result of bioleaching from the concrete matrix and 

biogenic reactions of calcium and biogenic sulfuric acid in solution. This decrease results in surface compounds being formed by the 

reaction of the calcium compounds and the biogenic sulfuric acid. Increase in silicon ions was observed when compared with the 

initial concentration. The final concentration of the silicon ions was 32 g/l. Similar results were reported by Estokova et el, 2011 and 

Harbulakova et al, 2013. 

3.7 pH VARIATION WITH TIME  

Considerable changes in pH were observed during the duration of the study and is presented in figure 4. This was due to the action 

of Acidithiobacillus Thiooxidans. Biogenic acid degradation of the cement matrix leads to the release of alkali compounds, reaction 

of these compounds with sulfuric acid in the sewer system leads to an increase in pH. 

 

Figure 4: VARIATION OF pH WITH TIME 

This rise in pH was controlled by addition of thiosulfate solution to the sewer system which also doubles as a source of energy for 

the predominantly Acidithiobacillus-Thiooxidans. Okabe et al, 2007 suggested that the decrease in pH during MICC in sewer 

systems is facilitated by microbial activities in addition to the abiotic neutralization of the concrete surface with CO2 and H2S. 
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3.8 SULFATE  

The activity of sulfur oxidizing bacteria produces sulfate as its main by-products. A plot of sulfate variation with time is 

presented in Figure 5. In sewer systems, sulfide reacts with oxygen at pH values of 6 and above. This reaction results in the 

formation of thiosulfate (S2O3
2-

), sulfite (SO3
-
) and elemental sulfur utilized by SOB for growth and metabolism. 

 

 

Figure 5:  SULFATE VARIATION WITH TIME 

 

In this study, the initial sulfate concentration decreased from 78g/l to 32 g/l within the initial 3 months period. This drop in 

sulfate is likely due to the neutralization reaction of the concrete coupons in the wastewater system. To compensate for this drop 

and provide an additional source of energy for the SOB, solution of thiosulfate was introduced into the system as a source of 

sulfate to aid in growth of acidophiles. With a decrease in pH within the sewer system elemental sulfur was further oxidized to 

sulfate. Sulfur being a temporary intermediate of sulfide oxidation is finally oxidized to sulfate. Sulfate oxidation is only favored 

by a relatively low pH values 3-4. (Okabe et al, 2007, Jensen et al, 2009, Joseph et al, 2012).  This low pH and the production of 

sulfate and subsequently sulfuric acid leads to the formation of corrosion by-product ettringite on the concrete coupons.  

4.0 CONCLUSION 

 The results obtained closely fits with the proposed mechanism for MICC in sewers. 

 The gradual drop in pH from 6.87 to 3.0 allowed for the growth of SOB Acidithiobacillus thiooxidans. 

 The formation of corrosion by-products gypsum and Ettringite on the concrete surface with the progression of the 

process supports the correlation between pH, bacteria activity and sulfate on the rate of corrosion and formation of by-

products. 

 Results obtained supports the mechanism of concrete corrosion in sewers and is comparable to those obtained in studies 

under laboratory conditions. 

 The biodeterioration of the concrete was caused the presence of biogenic sulfuric acid produced by Acidithiobacillus 

thiooxidans.  
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