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ABSTRACT  

Bouguer gravity anomalies (BGA) play an important role in exploration of mineral resources. Allowing the delineation of large 

geological structures, BGA participate into discovery of the deposits. However, the Kiri uplift region where several oil seeps have 

been recognized faces sparse coverage of data due to the difficult conditions of data acquisition on the field. This situation 

increases the non-uniqueness and nonlinearity problems of the solution using inverse methods. Although, potentially good at 

quantifying uncertainties, inverse approaches involve enormous computational tasks. We used machine-learning algorithms to 

predict and analyze gravity data in Kiri uplift region. The algorithms learned to perform as a multiple regression. During training 

steps, each independent variable included X and Y coordinates, digital elevation model (DEM) and geology. BGA values 

calculated by experts were provided as the dependent variables. K-fold cross-validation has been used ensure the models are well 

fit. Since the well-trained algorithms should result in small losses and errors, we experimented several optimizers. By comparison, 

testing results showed that deep neural network-based algorithm (DNN) has proven to be the most efficient with 5.37 Mean 

Squared Error and 1.75 Mean Absolute Error as model metrics. DNN showed the most accurate prediction, which, together with 

the measured BGA reported strongest Pearson correlation coefficient of 0.996. In addition, analysis showed that DNN result is 

one that conforms perfectly to the regional geology information of the study area. Machine learning algorithms proved their 

effectiveness to predict and analyze BGA in the study area. 

 ML algorithms proved their effectiveness to predict BGA where measurements lacked 

 The joint analysis of predicted, measured and regional lithology meets expectations 

 As predictors are X, Y, DEM and, lithology, we can customize the acquisition grids 

Key Words: Congo sedimentary basin, Deep learning, Geophysical inversion, Gravity anomalies, Multiple regression. 

________________________________________________________________________________________________________ 

1. INTRODUCTION  

Gravity prospecting method is sensitive to the anomalous changes of the rock densities into the subsurface [1]. In practice, gravity 

data are often referred to as (gravity anomalies) which are portions of the measured gravity that deviate from what is expected 

theoretically. There are many types of gravity anomalies however. In our study, we have been concerned with the so-called 

Bouguer gravity anomalies [2] that we abbreviate BGA. Indeed, BA have been largely used as an exploration tool for the 

discovery of petroleum deposits [3, 4]. They have been crucial for analysing deposition areas of the source rocks including 

hydrocarbon migration paths and locating trap structures of hydrocarbons as well as characterizing the seal rocks above the 

reservoirs. Overall, realistic maps of BA are involved in the earlier stage of hydrocarbon exploration to select appropriate sites for 

seismic surveys as well as the placement of the exploration wells. Ultimately, gravity data allow choosing the most economic and 

efficient options in exploration and development.  

This paper studies a case from the Congo basin which undergone several campaigns of oil exploration since 19954’s. Results of 

the previous works, carried out by different experts worldwide revealed the existence of many sedimentation units, oil seeps, 
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potential source rocks, reservoir rocks and seal rocks [5] in the study area. The Congo sedimentary basin (CSB) is a very large 

intra-cratonic depression [6,7, 8] covering more than 12,000,000 km
2
 [7] in DR Congo. From previous published data, [9] 

produced a simplified geological map of this basin that shows major sequences of stratigraphic units of the Late Neoproterozoic, 

Paleozoic and Cenozoic. Having noticed many periods of deformations from existing seismic profiles, [8] came to conclude that 

the CSB undergone a rifting that was initiated by the subsidence of the Late Proterozoic with a subsequent thermal relaxation. 

Consequently, this phase resulted in Rodinia breakup, which subdivided the Congo craton along northwest, southeast and 

northeast, southwest major faults [10]. According to the same authors, two other events of tectonics, which led to the assembly of 

the Gondwana continent, caused compressional tectonics during the Early Paleozoic Pan-African event [11] and, the Permo-

Triassic Gondwanide [8, 12]. However, it might be worth mentioning that gravity data played an important role in the 

understanding of the regional geology of this basin together with other data. The Kiri uplift and its surrounding areas have been of 

great interest for petroleum exploration. Mbandaka and Gilson exploration wells in that area reached a massive salt body at 4350 

m and 4536 m depths respectively [13]. This massive salt structure may constitute an important target for possible oil traps whose 

seeps are already highlighted in several sites around that area.  

Nonetheless, two main observations motivated our research. On one hand, the acquisition of gravity data in the study area as in the 

rest of the Congo basin was essentially carried out along rivers and existing roads. Therefore, many areas were not covered by 

measurements while others were densely covered. This situation cannot allow an effective interpretation of the data. On the other 

hand, common methods of gravity data interpretation are usually based on the inverse techniques to model the subsurface geology 

[14, 15]. Unfortunately, when using inverse techniques in geophysics one always faces the non-uniqueness and non-linear 

problems [16], meaning that, there may exist many models which can fit the measured data equally. Moreover, important 

variations in the result can be observed when even small variations are made in measured data and, according to [17], a high level 

of background noise combined with a lack of complete coverage during data acquisition can increases the non-uniqueness of the 

solution also.  

Fortunately, because of their strong ability in non-linear fitting and feature extraction, machine learning (ML) or deep learning 

(DL) algorithms [18] have proven to be the most powerful method in many fields including object detection, image classification 

and segmentation [19]. These techniques are still generating a new wave of experiments in many fields including that of 

geosciences. By using them, many researchers got satisfactory results as illustrated in section 2.2 of this paper. Therefore, in this 

paper we attempt to train ML algorithms in order to predict and analyze gravity (BGA) around Kiri uplift in accordance to its 

regional geology. The results of this study will contribute to remotely solve problems of sparse coverage of BGA measurements in 

the area of study and reduce the weight of the non-uniqueness problem of the solution due to the inverse approach that was used 

previously as interpretation method. This approach is not reported in the chosen study area yet. In addition, similar works reported 

in other parts of the world as shown in section 2.2 of this article have been mostly based on classification approaches. In contrast, 

our chosen algorithms will be trained to perform as multiple regression problems, approach whose, the previous studies did not 

consider. 

2. METHODS AND RELATED WORKS 

2.1. Chosen ML Methods  

Five artificial intelligence-based algorithms (Ohri, 2017) namely random forest (Brownlee, 2016; Manohar, 2017), decision tree 

(Manohar, 2017), k-nearest neighbor (Manohar, 2017; Ohri 2017), support vector machine (Rudolph 2018) and deep neural 

networks (Ohri, 2017; Michie and Spiegelhalter, 1994) have been involved in this study. As the first four algorithms were used as 

comparison to deep neural network, this section will mainly focus on the last algorithm. It is important to mention that artificial 

intelligence is a collection of technologies that imitate the way intelligent entities, humans for instance reason and behave in order 

to implement algorithms that could learn, react and make predictions (Mohaghegh et al., 2018). Currently, those algorithms are 

used in many fields like medical analysis, financial decision-making, speech and face recognition (Neapolitan and Jiang, 2018) 

etc. However, some concepts used such, as Machine-Learning (ML) and Deep-Learning (DL) can be confusing. Indeed, the larger 

concept is artificial intelligence from which ML is derived while DL derived from ML in turn.  

DL-based artificial intelligence technology developed rapidly (Pend et al., 2015). Often, it is referred to as "deep neural networks" 

(DNN) considering the number of layers involved in its architecture. A simple DNN architecture is made of three types of layers: 

inputs, hidden and output layers. Each layer consists of several artificial neurons. An artificial neuron constitutes the building 

block of a DNN. It works in the same way as a neuron in the brain of a human. Technically, it can be thought of a simple 

computational unit, which inputs the weighted predictors, sums them and outputs predictions using an activation function. The 

activation function serves to govern the threshold at which the neurons are activated and gives the power of the predicted signal. 

Every weighted predictor has a bias. Often, weights are randomly initialized towards small values. The activation function gives 

the ability to map the weighted sum to the output neuron. 
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In the architecture, all the neurons are linked each to others in a certain fashion (Venkatesan, 2018) where each neuron takes the 

inputs from the neighboring neurons scaled by their connections in order to be added together and perform some operations. The 

summed inputs go through an activation function through which, the outputs are passed to the next layer of neurons etc. 

Traditionally, the nonlinear functions such as logistic or sigmoid are applied as activations allowing the network to combine the 

inputs in a more complex fashion to provide a rich prediction capability. To summarize, a DNN learns to approximate the function 

that underlies the relationship between the input predictors and the output predictions, being flexible to match the adopted 

strategies of the practitioner at the same time. As stipulated by Brownlee (2019) and Manohar (2017), in ML, there exist different 

types of learning in practice, thus, both supervised and unsupervised regression problems can be handled by traditional ML 

algorithms as well as DNNs (Goodfellow et al., 2016). This gives to the algorithms an advantage to offer potential applications in 

geophysics. Problems of which, humans usually perform intuitively can be automatically solved (Neapolitan and Jiang, 2018). In 

this paper, we have used the supervised regression type of learning. In this approach, we trained the algorithms to cut down a 

mapping function among inputs and target variables. Every training data point has been labelled with its corresponding target 

during training. After training, the trained algorithms have been able of making predictions on unseen data (Bishop, 2006). 

Predictions can be thought as targets retained by the algorithms during their training steps. In other words, the algorithms try to 

learn patterns that can be used to automatically map input data points to their correct output targets. For doing so, they look for a 

best hypothesis that will work well on testing data which is data not seen by the algorithm during training but which is part of the 

training data set. The effectiveness of this best hypothesis is therefore assessed using new data, beyond training and testing data 

(Russell and Norvig, 2015). 

2.2. Related Works 

Wang et al. (2019) found that a convolutional neural network can be successfully used to interpolate sparse gravity and magnetic 

data. Moreover, by using airborne electromagnetic data, Noh et al. (2019) successfully trained a deep neural network to image the 

subsurface structures. Other authors like Maiti et al. (2020) jointly implemented a Bayesian neural network with variogram 

modelling using Bouguer anomaly of Eastern Indian Shield in order to reveal the shallow and deeper interfaces in complex 

geological terrain. Also, in the 80th EAGE Conference and Exhibition of the 2018 year, Dell'Aversana et al. (2018) discussed the 

possibility of using statistical and classification approaches of machine learning as a supporting workflow, integrating 

heterogeneous geophysical data that includes seismic, electromagnetic, gravity and well data by combining the approaches of both 

geophysical modelling and geophysical data inversion. Geophysical Insights carried out a proof of the concept in 2018, evaluating 

the effectiveness of machine learning in the basin of Denver-Julesburg (Laudon 2019). From the results, it has been found that a 

multi-attribute machine-learning application improved seismic resolution. A part from gravity and magnetic data, by using the 

post-stack structural seismic images, convolutional neural networks has been applied to attenuate noise in marine seismic data 

(Nealon et al., 2019). The output results were much cleaner than the inputs which allowed to highlight geological structures for 

easier interpretation. Bas et al. (2019) used a multiresolution deep neural network to track seismic horizons. The results showed 

accurate predictions even in areas located far from the known horizons. A state-of-the-art image processing using machine 

learning has been applied in 3D seismic fault and salt dome delineation successfully (Wang et al., 2018). According to Zhao and 

Mukhopanpadhyay (2018) convolutional neural networks are able to capture the structural features of post stack seismic data with 

good performance than conventional machine-learning. Their workflows for fault detection performed well on challenging 

synthetic and field data with a high accuracy. By utilising only synthetic seismic images to train the convolutional neural network 

Wu et al. (2018) accurately estimated fault orientations in seismic images. Salt body delineation is crucial to understand the basin 

structure and build velocity model for seismic migration. Shi et al. (2019) performed 3-D salt segmentation by using a deep neural 

network and the results indicated a good capability of capturing subtle salt features from 3D seismic images. Also, Waldeland et 

al. (2018) discussed how deep learning can be applied for automated seismic interpretation. Likewise, other authors such as Liu et 

al. (2018) proposed the application of deep-learning litho-facies analysis in seismic data. They found that the approach improves 

resolution in presence of complex lithology. Even for the interpolation of lithology between wells, geophysical inverse methods 

based on deep learning have been exploited (Bas et al., 2019). We recall that, this paper is concerned with the application of 

traditional machine-learning algorithms in comparison with deep neural networks for gravity data prediction and analysis. 

3. TRAINING AND TESTING 

3.1. Model Fitting 

It has been observed that fitting ML or DL model is a challenging task. Generally, the more training data the model is provided 

with, the better it makes predictions. However, as for supervised learning every training data point is labeled, meaning that 

outcomes are known, we can compare the predicted results with those labels and change the parameters of the model until both 

predicted results and labels fit well (Alvishnu, 2017). The main goal here is to give enough ability to the model to successfully 

generalize and ameliorate its interpretability. The ability to generalize well is crucial. Let us consider that a model has been 

trained. If this model cannot make accurate predictions on new data, then is useless even if it is able to predict on training data 
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accurately. The latter problem is called overfitting (Gupta, 2017). Inversely, the under fitting (Sharma, 2019) happens when the 

DNN is not provided with enough data in the training step. In this case, the model will even not make predictions accurately on 

training data. Therefore, the model will not be useful. Therefore, during the training steps, the model needs to be provided with 

enough data from which it will learn and its parameters have to be set in such way that, the predicted results and labels are close 

each-others. One of the powerful practices is using cross-validation techniques (Jason, 2020) that we applied to train and test our 

models. 

3.1.1. Data Sets 

As shown in Table1, the entire dataset used to train and test the selected models comprises 629 measurements spatially distributed 

on the study area. These data points are part of the 6000 measurements that were used to produce the first gravity map of the 

Congo basin, which, helped to get a knowledge on its general structural trends and further, allowed the delineation of several 

prospective areas for hydrocarbon exploration by the experts of the DR Congo ministry of hydrocarbons. Every input data point is 

essentially made of a regional geology information whose, distribution is show in Fig.1, a digital elevation model (DEM) as 

shown in Fig.2 and its corresponding label or target which is the measured value of the Bouguer gravity anomaly (BGA) and 

whose, the entire distribution is seen in Fig.3. 

Table 1. Summary of the data used to train and test the chosen predictive algorithms 

 Count Mean Std Min 25% 50% 75% Max 

East long. 

(meter) 

629 881565.7 36098.07 822777 850683 878557 911937 951025 

South lat. 

(meter) 

629 9935609 45204.45 9861506 9894856 9933557 9972317 10022148 

Lithology 629 1.238474 0.698302 0 1 1 2 2 

DEM (meter) 629 330.3355 15.9784 310 318 326 340 385 

Gravity (mGal) 629 -32.0894 25.81027 -84.726 -48.646 -32.327 -10.769 19.1059 

 

For the acquisition and processing of the data, Lamont Doherty Geological Observatory, ORSTOM and Kinshasa Meteorological 

Service were the operators, on behalf of the Congo’s government (Kadima et al., 2011). In order to compute the BGAs, 

measurements were processed using 2.67 gm/cm
3
 of reduction. 

 
Figure 1. Map of the spatial variation of the regional geology in the study area. As seen on the color bar, geology varies 

from zero to two. For all the three types of lithology in the study area, the Quaternary is given the value of zero, one for 

the Tertiary and 2 for the Cretaceous. 
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Fig. 2. Map of the spatial variation of the digital elevation model (DEM). Almost, three distinct regions are seen on the 

map. High values are mostly localised in the southwest of the study area and lowest values mostly in the west part. 

Distribution is showing to be correlating with the regional geology. 

 
Fig. 3. Map of the spatial distribution of the BGA. As for geology and DEM, almost, three distinct regions are seen on the 

map. In contrast with the DEM distribution, high gravity values are mostly located in the northern-west of the study area 

and lowest values mostly in the southern-west. The distribution shows well correlation with the regional geology.  
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In order to ensure good fitting of the chosen models, we applied the k-fold cross-validation technique to get where the number of 

folds was defined to be five. Randomly, Table 2 shows an example of a set reserved for training purpose only. 

 

Table 2. Summary of the data set used to train the chosen algorithms, randomly chosen. 

 Count Mean Std Min 25% 50% 75% Max 

East long. (meter) 503 882102.3 36132.58 822777 850690 878558 911946 951025 

South lat. (meter) 503 9934328 45317.04 9861506 9894818 9933523 9972310 10022148 

Lithology 503 1.232604 0.711019 0 1 1 2 2 

DEM (meter) 503 330.6402 16.3084 310 318 326 340 385 

However, the relationship between the labels namely made of digital elevation model, latitude and gravity with geology is show in 

Fig.4. In addition, the summary of the testing data set, randomly chosen is shown in Table 3. 

 
Fig. 4. A pair plot of the training data set. We can see the relationship between DEM, gravity and latitude in accordance 

with the regional geology: gravity is weakly increasing with the increase of the DEM while is still high in cretaceous and 

low in quaternary. In addition, the decrease in latitude implies an increase in gravity. 

  

Table 3. Summary of the data set used to test the trained algorithms, randomly chosen. 

 count mean Std min 25% 50% 75% max 

East long. (meter) 126 879423.4 36023.61 822792 846500.3 878498 910544.5 951013 

South lat. (meter) 126 9940722 44563.44 9861523 9900384 9939115 9977850 10022146 

Lithology 126 1.261905 0.647192 0 1 1 2 2 

DEM (meter) 126 329.119 14.58416 310 317.25 326 337 379 

3.1.2 Optimizer and Loss 

The supervised DNN training is an optimization problem. This process aims to find the lowest loss and error that express how 

efficient the trained DNN is. To minimize losses and errors and, to prevent the overfitting phenomena, we have experimented with 

different optimization functions namely the Stochastic Gradient Descent or SGD (Bottou and Bousquet, 2012), the Root Mean 
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Squared Propagation also called RMSProp (Geoffrey 2020), the Adam or Adaptive Moment Estimation (Heusel et al., 2017) and 

the Nadam or Nesterov Accelerated Adaptive Moment Estimation (Dozat, 2016). It is good to mention that, the well-chosen 

optimization and loss functions allow the DNN to make optimum and faster prediction. Optimizers update weights and biases of 

the DNN to reduce its error. In addition, we have defined the Mean Squared Error (MSE) (Mishra, 2018) in Eq. (1) to be the loss 

function. The latter expresses the squared average of the difference between labels and predicted results. In this equation jy

represents the labels and jy
)

, the predicted results. 

  
2

1

1 N

j j

j

MSE y y
N 

   (1) 

Finally, the Nadam optimization function resulted in the best results as shown in Fig.5. The trained DNN model achieved very 

small errors on both the training and testing sets while it is still prevented from the overfitting. When the testing value of loss is 

lesser than that of training one, we say that the model is overfitting. 

 
Fig. 5. The Mean Squared Error-loss of the trained DNN model with different optimization functions. The training and 

testing losses are decreasing with the number of epochs. Nadam optimizer resulted in smallest loss and kept the small gap 

between training and testing loss values. The algorithm was trained on 3000 epochs thus for visualization purpose we 

displayed the scenario between 35 and 53 epochs.  

3.2. Metric Functions 

The well-trained algorithms should result in small errors. Indeed, in the real life we are always interested on how well the models 

will perform on new data. This determines the real-world performance of the algorithms. In other words, a model that performs 

well on data that it has not seen before, generalizes well and its error is small as well. That is the reason why, all the performance 

metrics have to be calculated on the testing data that are separated from those used in real training step.  

However, Bouguer anomalies are continuous variables. Since then, we can use the Mean Absolute Error (MAE) to assess the 

performance of the trained models. MAE is measure of the error between a pair of observations which express the same 

phenomenon. This metric has the advantage of not considering the directions of those variables. The MAE as expressed in Eq. (2) 

is therefore an arithmetic average of the absolute error values between the predicted results iy  and the corresponding labels iy . It 

is a linear score in which all the individual differences are equally weighted in the average. 

 1 1

n n

i i ii i
y y e

MAE
n n

 


 
 

 (2) 
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Among all the optimizers that we experimented, Nadam optimiser have resulted in smallest MAE for the DNN as shown in Fig.6 

and prevented models from overfitting. When the testing error value is lesser than that of training one, we say that the model is 

overfitting. 

 
Fig. 6. The Mean Absolute Error of the trained DNN model with different optimization functions. The training and testing errors 

are decreasing with the number of epochs. Nadam optimizer resulted in smallest loss and kept the small gap between training and 

testing loss values. The algorithm was trained on 3000 epochs thus for visualization purpose we displayed the scenario between 35 

and 53 epochs.  

Another metric that we used is the Root Mean Squared Error (RMSE) defined in Eq. (3) and which is a quadratic scoring rule that 

uses to square the errors before they can be averaged. In comparison with the MAE, the RMSE gives high weight to large errors, 

for this reason it is useful where large errors are undesirable. In the equation iy and ix are predicted and measured gravity 

respectively. 

  
2

1

1 n

i i

i

RMSE y x
n 

   (3) 

For the RMSE metric, the same Nadam optimizer has been good to minimize errors and prevent the models from overfitting.  

As said previously, a K-fold cross-validation technique whose metric results are shown in Table 4 has been applied to split 

original data into real training and testing sets that have been used to train traditional ML models. This can be taken as a procedure 

for resampling the data and, it is useful to assess machine-learning models where there are limited data samples. The parameter k 

is referring to how many groups into which our original data is going to be split. Therefore, when a given value for k is defined, it 

may be used to replace k in the reference to the algorithm, such as k equals 5 that becomes 5-fold cross-validation. It is a very 

popular technical since it usually results in a less biased estimation of the skill of the model than any other technique, such as the 

train/test split technique. 

 

 

 

Table 4. The k-folds cross-validation metric results for the chosen traditional machine learning algorithms. 

Models Cross-

validation 

Datasets Evaluation metrics 
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 K-fold Training 

set 

Testing 

set 

MAE MSE RMSE Mean 

MAE 

Random Forest 1 503 126 -3.25 -

20.3 

-4.51 1.75 

2 503 126 -2.88 -

16.4 

-4.05 

3 503 126 -2.82 -

15.6 

-3.96 

4 503 126 -2.96 -

18.5 

-4.31 

5 504 125 -3.30 -

19.9 

-4.46 

 K-fold Training 

set 

Testing 

set 

MAE MSE RMSE Mean 

MAE 

Support Vector 

Machine 

1 503 126 -21.4 -687 -26.2 4.62 

2 503 126 -22.4 -739 -27.1 

3 503 126 -21.2 -667 -25.8 

4 503 126 -19.0 -524 -22.8 

5 504 125 -22.6 -713 -26.7 

 K-fold Training 

set 

Testing 

set 

MAE MSE RMSE Mean 

MAE 

K Neighbors 1 503 126 -1.63 -

4.55 

-2.13 1.27 

2 503 126 -1.90 -

6.46 

-2.54 

3 503 126 -1.49 -

4.02 

-2.00 

4 503 126 -1.62 -

4.68 

-2.16 

5 504 125 -1.45 -

3.77 

-1.94 

 K-fold Training 

set 

Testing 

set 

MAE MSE RMSE Mean 

MAE 

Decision Tree 1 503 126 -4.69 -

47.0 

-6.85 2.05 

2 503 126 -4.38 -

33.8 

-5.82 

3 503 126 -3.77 -

26.6 

-5.15 

4 503 126 -4.23 -

33.8 

-5.82 

5 504 125 -3.98 -

25.7 

-5.07 

 

4. RESULTS AND DISCUSSIONS 

4.1. Results 

The testing results from all the trained algorithms are reported here. The analysis is done in this section too. We used different 

kind of visualizations for the purpose. In first, we have computed a pairplot as seen in Fig.7, which visualizes pairwise the results 

to find the relationships between predictions and measured or true gravity of the study area. A pairplot is a module integrated of 

seaborn library in python that gives a high-level interface to draw informative and attractive statistical results (Sarath, 2019). In 

fact, from this pairplot, variations can be observed through each sub-plot. Note that, sub-plots are in matrix format in which the x 

axis is represented by the row name and the y axis by column name. The diagonal of this plot shows sub-plots, which are 

distributions of the univariate kernel density of the features. 
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Fig. 7. Compared to measured gravity, all the models showed good result. Random forest has the best performance 

followed by k-nearest neighbor while Decision tree results are less accurate than those of the two previous models are. In 

turn, Support vector machine result is not good as that of Decision tree. All the results correlate the regional geology of the 

study area. 

In addition to the pairplot, we computed Pearson correlation coefficients, which are reported in Table 5. This is a way of 

quantifying the relationship between the predicted results and, the measured or true gravity of the study area. These coefficients 

take values between -1 that indicates a negative linear correlation which is perfect and 1 that indicates a positive linear correlation 

which is also perfect. When the coefficient is zero, there is no linear correlation (Zach, 2020). The closer the coefficients are to 

one, the stronger the relationship between the predicted result and the measured gravity. 

Table 5. Pearson correlation coefficients between the predicted results of the trained traditional machine learning 

algorithms and the measured gravity of the study area 

 Measured SVM Pred. KNN Pred. DTR Pred. RFR Pred. 

Measured 1.00 0.96 0.98 0.975 0.99 

SVM Pred. 0.96 1.00 0.98 0.962 0.98 

KNN Pred. 0.98 0.98 1.00 0.974 0.99 

DTR Pred. 0.98 0.96 0.97 1.000 0.99 

RFR Pred. 0.99 0.98 0.99 0.986 1.00 

From the above table we observed that random forest predictions (RFR Pred.) has the strongest correlation with the measured 

gravity followed by k-nearest neighbor predictions (KNN Pred.), decision tree predictions (DTR Pred.) and support vector 

machine predictions (SVM Pred.) at last position. However, based on values of those coefficients, all the predictions have strong 

correlation with the mesured gravity. In order to give more clear idea of how these predictions are spatially distributed in 

accordance to the measured gravity, we have drawn the following gravity maps: random forest prediction map in Fig.8, support 
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vector machine prediction map in Fig.10, k-nearest neighbor prediction map in Fig.12 and decision tree prediction map in Fig.14. 

These maps highlight small differences with the map of the measured gravity.  

 

(b) Measured gravity 

 

(b) Random forest algorithm prediction 

Fig. 8. The spatial distribution map of the random forest result. Measured gravity map (a) show almost the same distribution as 

that of random forest prediction map (b). Measured gravity ranges from -75 mGal to zero mGal while random forest gravity 

ranges from -80 mGal to zero mGal and gravity field weakens towards southeast. For instance, compare A, and A’ on the maps. 

Let us recall that all the algorithms have been trained on top of regional geology of the study area. To know in which geology the 

random forest model predict well we computed the lmplot in Fig.9, which is, intended to be intensively convenient in regression 

A’ 

A 
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model fitting across subsets of the whole dataset. The lmplots for support vector machine, k-nearest neighbor and decision tree 

models are shown in Figs.11, 13 and 15 respectively. 

 
Fig. 9. The lmplot of the random forest prediction and the measured gravity in relationship with regional geology. Good 

linear fitting of the random forest prediction to the measured gravity can be observed across geology thus, the best fitting 

is in tertiary, followed by cretaceous and finally, the quaternary.  

 

(b) Measured gravity 

B 
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(b) Prediction of the support vector machine  

Fig. 10. The spatial distribution map of result the support vector machine. Measured gravity map (a) show differences in the 

distribution in relation to that of support vector machine prediction map (b). Measured gravity ranges from -75 mGal to zero mGal 

while support vector machine gravity ranges from -70 mGal to -10 mGal. Gravity field weakens towards southeast and northeast. 

For instance, compare B and B’ on the maps. 

 
Fig. 11. The lmplot of prediction of the support vector machine and the measured gravity in relationship with regional 

geology. Good linear fitting of the prediction to the measured gravity can be observed in tertiary only. 

B’ 
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(a) Measured gravity 

 

(b) k-nearest neighbor algorithm prediction 

Fig. 12. The spatial distribution map of the k-nearest neighbor result. As for random forest result, measured gravity map 

(a) shows almost the same distribution with to that of the k-nearest neighbor prediction map (b). Measured gravity is still 

ranging from -75 mGal to zero mGal and k-nearest neighbor gravity from -80 mGal to zero mGal too. The same, gravity 

field weakens towards southeast. For instance, compare C and C’ on the maps. 

C 

C’ 
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Fig. 13. The lmplot of the k-nearest neighbor result and the measured gravity in relationship with regional geology. Good 

linear fitting of the k-nearest neighbor prediction to the measured gravity can be observed across geology thus, the best 

fitting is still in the tertiary as for random forest, followed by the quaternary instead of cretaceous.  

 

 

(a) Measured gravity 

D 
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(b) Decision tree algorithm prediction 

Fig. 14. The spatial distribution map of the decision tree result. Apart from random forest, k-nearest neighbor and 

support vector machine results, measured gravity map (a) shows obvious differences in relation to that of the decision tree 

prediction map (b). Measured gravity is still ranging from -75 mGal to zero mGal and decision tree gravity from -80 mGal 

to zero mGal as for k-nearest neighbor and random forest thus, gravity field weakens towards southeast and northeast. 

For instance, compare D and D’ on the maps. 

 
Fig. 15. The lmplot of the decision tree result and the measured gravity in relationship with regional geology. Relative good 

linear fitting of the decision tree prediction to the measured gravity can be observed across geology. In contrast to the 

other models, prediction fits almost equally in all types of geology but this model seems to perform well in quaternary. 

 

 

4.2. Discussions 

D’ 
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We could not find ML-based works reported in the study area previously so that we may compare our result to those. Apart from 

what is listed in section 2.2, Using ML or DL algorithms many other research works (Otchere et al., 2020) have been conducted to 

either classify facies or predict some properties of hydrocarbon reservoir and showed good results. A same approach to what we 

achieved in this paper could be that of Dell’Aversana (2019) who used five supervised ML algorithms to comparatively classify 

lithofacies based on multiple logs from two wells and found that his methodology is particularly useful to quickly predict or 

classify lithofacies when it is required in real-time decision-making. Likewise, our trained algorithms give consistent results in 

milliseconds and can work on simple computers, allowing making interpretation in short time. The other published works to 

comparing the machine learning tools report the classification of rock facies using the gradient boosting algorithm (Zhang and 

Zhan, 2017) which was effective on two test well data. Before we conclude the study, our traditional ML-based results have been 

compared to the result of deep neural network DNN that is recognized to be the most powerful tool in the field of ML. For the 

purpose, an analysis of the Pearson correlation coefficients (Table 6) is done and lmplot of the DNN result (Fig.17) against 

measured gravity have been computed. Spatial distribution of the latter is shown in Fig.16 too. Although, random forest showed 

strongest positive correlation to measured gravity among traditional ML algorithms but DNN result is shown to be the best of all 

the trained algorithms. 

Table 6. Pearson correlation coefficients between the predicted results of the trained traditional ML algorithms, DNN 

result and the measured gravity of the study area. 

 Measured MRNN 

Pred. 

SVM 

Pred. 

KNN 

Pred. 

DTR 

Pred. 

RFR Pred. 

Measured 1.000 0.996 0.956 0.976 0.975 0.987 

MRNN Pred. 0.996 1.000 0.963 0.980 0.977 0.991 

SVM Pred. 0.956 0.963 1.000 0.982 0.962 0.979 

KNN Pred. 0.976 0.980 0.982 1.000 0.974 0.992 

DTR Pred. 0.975 0.977 0.962 0.974 1.000 0.986 

RFR Pred. 0.987 0.991 0.979 0.992 0.986 1.000 

 

 
(a) Measured gravity 
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(b) Decision tree algorithm prediction 

Fig. 16. The spatial distribution map of the deep neural network result. The measured gravity map (a) does not show any 

difference with that of the deep neural network prediction map (b). Measured gravity is still ranging from -75 mGal to 

zero mGal and deep neural network gravity from -80 mGal to zero mGal as for k-nearest neighbor and random forest 

thus, gravity field does not weaken towards southeast nor northeast as in previous cases. For instance, compare E and E’ 

on the maps. 

 

 
Fig. 17. The lmplot of the deep neural network and the measured gravity in relationship with regional geology. Good linear fitting 

of the deep neural network prediction to the measured gravity can be observed across all types of geology. In contrast to the other 

models, prediction fits equally in all types of geology. 

 

E’ 
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5. CONCLUSIONS 

Using geographic coordinates, digital elevation model and regional geology information, we have trained five supervised machine 

learning algorithms to efficiently predict and analyze gravity in Kiri uplift region of the Congo basin. Although all the chosen 

algorithms resulted in some small differences regarding their evaluation metrics thus, the testing results showed that they are all 

efficient enough to predict gravity. Approximatively, all the testing results correlated well the regional geology of the study area. 

For the traditional ML algorithms, RF showed the best result. Its prediction showed a Pearson correlation coefficient of 0.99, 

followed by k-NN with 0.98. DT and SVM had less performance than those of the two previous algorithms with Pearson 

correlation coefficients of 0.97 and 0.96 respectively. The spatial distribution maps of the predicted results showed almost the 

same distribution as that of the measured gravity thus, small differences have been observed towards southeast on random forest 

and k-NN prediction maps where gravity values ranged from -80 mGal to zero mGal towards southeast while measured gravity 

value ranged from -75 mGal to zero mGal. Important differences have been noticed on the spatial distribution map of SMV. The 

predicted gravity values ranged from -70 mGal to -10 mGal towards southeast and northeast. Those of DT showed the same trend 

while ranging between -80 mGal and 0 mGal as for k-NN and RF. The spatial distribution map of the DNN prediction did not 

show any obvious difference with that of the measured gravity. A good linear fitting of the SMV prediction to the measured 

gravity has been observed in tertiary only while that RF was good across all types of geology with best fitting in tertiary, then in 

cretaceous and, in quaternary. K-NN showed best linear fitting in the tertiary as for RF, followed by the quaternary instead of 

cretaceous. For DT, the linear fitting has been relatively good. In contrast to the other algorithms, DT prediction fits almost 

equally in all types of geology with a good tend in quaternary. In final, DNN showed the best of the best linear fitting across all 

types of geology. Its prediction fitted equally all types of geology in contrast to the other models with 0.996 Pearson correlation 

coefficient. The result of this study shows that machine-learning algorithms can be used to effectively, predict, and analyze 

gravity data in Kiri uplift region of the Congo sedimentary basin. 
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