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_______________________________________________________________________________________ 

ABSTRACT  

Recognizing faults in seismic images is crucial for structural modeling, prospect delineation, reservoir characterization, and well 

placement. Basically, faults have the appearance of lateral reflection discontinuities in seismic images and are interpreted using 

seismic attributes that measure those discontinuities such as coherence, and curvature. However, methods based on seismic 

attributes are often more challenging, time-consuming, and may suffer from noises and sensitivity of stratigraphic features, which 

also tie in reflection discontinuities. Therefore, we propose a solution for delineating faults from 3D seismic images using a 

supervised fully convolutional neural network (CNN). This approach uses a pixel-by-pixel prediction in 3D seismic images to 

classify whether a given pixel is a fault or a non-fault. The trained model learned to bank on rich and proper features that are 

important for the recognition of faults and achieved 97% of accuracy. To test the effectiveness of our model, we used new 3D 

seismic images, and the results displayed clean and accurate recognition of faults within only milliseconds, saving time and 

optimizing the accuracy. In this paper, we showed that by using only a few 3D seismic images from a given seismic volume to 

train the model, not only do we handle one of the difficulties encountered by researchers to obtain a sufficient amount of data 

needed to train common CNN models but also, interpreters can successfully predict faults in any other seismic image from the 

same volume. 

Key Words: Binary Image Segmentation, Convolutional Neural Networks, Deep Learning, Seismic Fault Interpretation. 

_______________________________________________________________________________________________

1. INTRODUCTION 

It is known that subsurface geology modelling is very challenging and involves many tasks, such as faults interpretation, which is 

often based on seismic images. However, faults recognition in seismic images is challenging and requires considerable manual 

labour and time. Since faults are essential for the localisation of oil regions, prospect delineation, reservoir characterization, as 

well as well placement, researchers in exploration, development and production petroleum industry are continuously developing 

tools to enhance their recognition from seismic data. Basically, faults show high lateral discontinuities or low lateral continuities 

of reflections in seismic images [1]. Then, traditional interpretation method requires tracing and picking them manually but, this is 

still a time-consuming and a manual work intensive process and often results in very low interpretation efficiency. As for 

example, an interpretation expert may take from weeks to months to label faults within a typically sized seismic volume [2]. 

Taking the benefit of the way faults are viewed in a seismic image, geophysicists have made efforts to develop a suite of 

computer-aided tools, namely seismic attributes such as coherence, curvature and flexure attribute. The coherence attribute has 

been used [3] to estimate the lateral similarity of seismic reflections while the curvature attribute [4, 5] and the flexure attribute [6] 

has been used for the purpose of outlining small-scale structures such as subtle faults and fractures. Moreover, the coherence 

attribute has been proved effective in depicting faults and stratigraphic features and various cases of study has demonstrated the 

efficiency of curvature and flexure attributes to identify planar seismic features like fractures. Other seismic attributes such as the 
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semblance [7], the variance [8, 9] and the gradient magnitude attributes [10]  has been invented to measure the seismic reflection 

continuities and discontinuities. Although these tools have brought relevant contributions in seismic interpretation to the extent 

that they are still widely used, it is worth mentioning that seismic attributes are limited and insufficient in fault recognition 

because faults are sensitive to noise and stratigraphic features, which also may correspond to reflection discontinuities in seismic 

images [11].  

Nevertheless, semi-automatic fault extraction tools have been popular in the past years with numbers of algorithms presented in 

this field, including ant tracking [12], Hough transform [13], Eigenvector analysis [14], dynamic time wrapping [11], motion 

vector [15] and more, but also, it is observed that applying such algorithms on a seismic volume is a time-consuming process, 

particularly for large datasets since the classification have to be repeated at every sample in the volume [16]. However, with the 

recent success of machine learning in computer vision domain, many novel techniques are being introduced into the field of 

seismic interpretation in order to achieve better results on fault detection [17, 18, 19], salt-body delineation [20], facies analysis 

[21] and even in the interpretation of direct hydrocarbon indicator (DHI) characteristics [22]. Thus, the convolutional neural 

networks (CNN), which constitute a subset of machine learning techniques that belongs to the deep learning type of algorithms 

[23] have proven to be the most powerful method in solving problems of object detection, image classification and segmentation 

nowadays [24]. In this work, we implement a CNN model and investigate its effectiveness to recognize faults in a 3D seismic 

image. As it is customary into the training of common deep learning models, even if there is a need of huge amount of data to 

train a good CNN model but, we think that the interpreter may need only to pick and label a relatively small 3D seismic image 

dataset of a given seismic volume to train the network then, the trained model can accurately recognize and predict faults in any 

other image of the same seismic volume. 

2. MATERIAL AND METHODS 

2.1 Framework and Libraries 

For the implementation of our CNN fault recognition model, we have used the following basic python frameworks and libraries: 

Tensorflow which is one of the most popular machine learning framework developed by the Google Brain team; Keras, an open‐

source library for deep learning that can be used on Tensorflow [25]; Numpy, penCv2 and Matplotlib. Aside from the above 

packages in the list, most of what we need comes preinstalled with Anaconda browser which is a data science platform having one 

of the best integrated development environments (IDEs) for python data science [26] like Jupyter Notebook that we have used to 

write our codes. But, usually, a predictive machine learning model need labels to be trained. To create faults labels from our 

training 3D seismic images, we have used GIMP software, which is free accessible online software. 

2.2 CNN and Seismic Fault Recognition 

2.2.1 CNN Model Theory 

In computer vision, CNN models are now state-of-the-art among the most popular techniques used for image segmentation. In 

CNNs, fault recognition may be taken as a binary image segmentation problem where we can classify all pixels of a seismic image 

into two classes, namely: fault class and non-fault class. This classification task is achieved by labelling all pixels belonging to 

fault class with ones and all pixels belonging to non-fault class with zeros in a 3D seismic image. To illustrate the convolution 

layers, let us take a three-layer CNN as an example (Figure1). In this example, consider that each layer has one channel where    

and    denotes the convolution filter and the bias in the  th layer. The   ̂and   differentiate the convolution operations applied on 

different locations of the image.  ̂  =  
 
;  ̂  =  

 
 are referred to as weight sharing of the CNN so; the convolution layer can be 

expressed (Equation 1) as follows: 

                 )        (1) 

Where   is the convolution operation,   the nonlinear activation function;    and    are respectively convolution kernel and bias 

for layer  . Often, a convolution layer could have many kernels              ) and will result in output feature of K channels. 

When      has C channels, the value in the  th channel and position     ) of the output the (Equation 2) in layer   is given by: 

      
   (∑ ∑ ∑       
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]     [

 

 
]  

        )  (2) 

In this equation,      is the designed  th kernel of size [C, M, N] indicating the channel, the height and the width of the kernel. 

The kernel should have the same channel as     . To sum up, the main prediction CNN model may consist of several convolution 

blocks [27], where each block consists of: 
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 Convolution layer (Conv), 

 Dropout layer placed immediately after the Convolution layer,  

 Rectified linear unit (ReLU) layer as nonlinear activation function,  

 Max pooling layer (Pool) and, 

 Fully-connected layer. 

In a binary segmentation task, the fully connected layer has a sigmoid activation function, which allows the output of the CNN 

model to be treated as a probability distribution across two classes (Figure 2), where 0 denotes the non-fault class and 1 the fault 

class. 

 
Figure 1.An illustration of convolution layers. The kernel and bias in each layer are weight sharing. 

  

(a)

 

(b)

 

(c)

 

(d)

 

Figure 2. Examples of predicting3D seismic images (a) and (c) and corresponding predictions of fault probability maps (b) 

and (d). We can see clearly that all probabilities range from o to 1 and all zeros represent the non-fault class while all ones 

stand for fault features. 
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More clearly, if we assume that              is the output of layer   of the CNN with dimensions of          channels, the 

relationship between the output   
 
 of a single channel   of layer   (called a feature map) and the output of the previous layer can be 

given by the relation below (Equation 3) [28] where     is a 2D convolution operation of an image   with a filter  ,   is a bias 

and   is a ReLU function. 

  
 
  (∑     

    
        

    
 
)      (3) 

In learning operations, CNN models expect the spatial relationship between pixels by learning internal feature representations 

using small squares of input images and preserve those relationships. For a given image, features are learned and used across the 

whole image, allowing objects in the image to be shifted or translated in the scene while still detectable by the model.  CNN 

models use fewer weights to learn and remain unchanged to object position and distortion in the scene. CNN models automatically 

learn and generalize features from the input domain. 

2.2.2 CNN Architecture 

Based on the type of task to be accomplished by the predictive CNN model, there are various ways of designing the architecture 

of model. Here, we have chosen to use a modified version of the Unet architecture (Figure 3) which is a supervised end-to-end 

fully CNN model. The original Unet [29] was proposed for biomedical image segmentation problems. Nowadays, Unet is widely 

used for many other image segmentation problems. 

 
Figure 3. A modified Unet architecture constituting our model that we used for seismic fault recognition: an input 256 x 256 x 3 

seismic image is given to encoder path of the model and goes through convolution layers to be down-sampled then, passes to the 

decoder path for the up-sampling operation. We apply a sigmoid function to the final feature map in order to get the fault 

probability map of the same size as the input seismic volume. 

Like in the original Unet, our modified architecture consists of both a contracting path for the down sampling of the image 

(encoder path) and a symmetrical expansive path for the up sampling of the image (decoder path). However, we have reduced the 

number of convolution layers from twenty-three in the original Unet to fifteen in order to save the computation cost while 

preserving good performance in fault segmentation at the same time. In addition, the number of features is consequently reduced 

proportionally to the number of convolutional layers. 

2.2.2.1 Operations in Encoder Path 

In the encoder path, each step has two 3×3 convolutional layers respectively followed by a ReLU and a 2×2 max pooling 

operation with stride 2 for down sampling. To prevent the overfitting or the under fitting during the training, we defined a dropout 

layer right after each convolution and before the pooling operation and we doubled the number of features after each step. 
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2.2.2.2 Operations in Decoder Path 

In the decoder path, every step is made by a 2x2 up sampling operation, a concatenation operation with features from the encoder 

path, and two 3x3 convolutional layers followed by a ReLU. The up-sampling operation is implemented using the function 

Conv2DTranspose defined in keras [30] and the final output layer is a 1x1 convolutional layer with a sigmoid activation such as 

logistic function (Equation 4) to map each final feature vector into a probability value for the output fault probability map. 

Herein,    is the   value of the midpoint of sigmoid,   the curve’s maximum value,   the logistic growth rate or steepness of the 

curve. For values of   in the domain of real numbers from    to   , the S-curve shown on [31] is obtained, with the graph of   

approaching   as   approaches    and approaching zero as   approaches   . 

         )   
 

          )  (4) 

2.2.3 Train and Validate the Model 

2.2.3.1 Data Pre-Processing 

The pre-processing of the training data is crucial to train a good CNN model. In this stage, we increased the diversity of the 

training dataset across the sampled seismic volumes. This diversity increasing serves to prevent the model from learning irrelevant 

features. Herein, we have performed a data augmentation processing using the modified Keras Image Data Generator API [32] 

where each of the 6 well collected 3D seismic images as well as their corresponding fault labelled images was set to be converted 

to grayscale, resized to a resolution of 256X256X1 (for fault label images) and 256X256X3 (for seismic images), then we rotated, 

zoomed in and flipped all the images so that the final results allowed us to generate the 672 pairs of seismic and binary fault 

labelled images that we used to train and validate our CNN model. 

2.2.3.2 Training and Validation 

To train and validate the CNN model, we have split all the prepared 672 pairs of 3D seismic and binary fault label images into 

training and validation sets. Herein, we took the 86% of the dataset for training purpose while the remaining 14% of the same 

dataset is set aside to be used for the validation purpose. All images have been fed into the model in batches of 16 images. We 

also applied the Adam function to optimize the model parameters and we defined the number of epochs to be 150. At every epoch, 

all the training images are processed completely. 

2.2.3.3 Training and Validation Losses 

In order to measure the error of fault recognition process, we have used the cross-entropy loss function (Equation 5). This loss 

function is widely used for binary segmentation of common images. As the labels are all binary values (ones or zeros), the first 

term measures the prediction error at the image pixels labelled by ones while the second term measures prediction error at the 

pixels labelled by zeros. 

   ∑   
   
         )  ∑      )        )

   
    (5) 

In this equation   is the number of pixels of the input image;    is true binary labels and    is the prediction probabilities (0<  <1) 

computed from the sigmoid activation in last convolutional layer. As shown below (Figures 4 and 5), after 150 epochs, the trained 

CNN model qualitatively achieved 97% of accuracy and 6, 5% of loss in training while the validation accuracy and loss 

respectively displayed, 96, 8% and 7%. 
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Figure 4. Training and the validation losses decrease along with the number of epochs. The best recorded model was 

observed after 140th epoch on the validation curve, converging to 6,9 % of loss 

Accuracy metric computes how the predictions equal training labels. It creates two local variables which are the total and the 

count used to calculate the frequency with which predicted labels match the training ones. This frequency is ultimately returned as 

binary accuracy: an idempotent operation that simply divides total by count [33]. In short, the accuracy metric tells us what % of 

predictions was correct. In summary, the training and validation process lasted nearly 6 hours but could be much lower by using a 

high-performance computer. 

 
Figure 5.Training and validation accuracies increase along with the number of epochs. The best recorded model was 

observed after 140th epoch on the validation curve, converging to 96.99 % of accuracy 

2.2.3.4 Model Performance Evaluation 

Apart from the above built-in accuracy metric function; to evaluate the performance of our trained model, we defined two types of 

metric function for evaluation: the classification and segmentation metrics. For segmentation evaluation, the mean Intersection-

Over-Union (mean IoU) metric function has been calculated and the precision-recall, the true positives (TP), true negatives (TN), 

false positives (FP) and false negatives (FN) numbers intervened in order to quantitatively estimate fault and non-fault 

classification performance of our trained model.  

 Mean Intersection-Over-Union:  

The mean Intersection-Over-Union (mean IoU) is a common semantic image segmentation metric often used for the evaluation 

purpose. It first calculates the IoU (Equation 6) for each existing semantic class and then gives the average over those classes [34]. 

This metric is computed based on TP, FP and FN numbers defined in the paragraph above. 
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     (6) 

 Precision-recall metric:  

Precision and recall metrics are calculated based on the TP and FP variables (Equations 7 and 8). These metrics respectively give 

the precision and the recall of the predictions with respect to the labels and are defined as follows: 

          
  

     
   )         

  

     
 (8) 

The precision metric gives idea of what % of faults are correctly predicted by the model while the recall indicates what % of true 

faults the model detected. 

 TP, TN, FP and FN rates:  

True positives (TP), false positives (FT); true negatives (TN) and false negatives (FN) rates [35] are metrics used to calculate four 

variables that keep tracking the accumulated number of the true faults predicted as faults, the false faults predicted as faults, the 

false faults predicted as non-faults and the true faults predicted as non-faults [36] respectively. These rates constitute a 

classification performance metric that is especially useful for imbalanced class problems [37] as it is the case in our fault 

segmentation task where we may have more than 90 % as non-fault features in seismic images. 

3. RESULTS AND DISCUSSIONS 

3.1 Results 

Recall that we have been implanting a CNN model in order to predict whether pixels belong to fault class or to non-fault class 

within a given 3D seismic image. Therefore, for each pixel we got a value between 0 and 1 after the training step where 0 

represents the non-fault class and 1 represents the fault class. As we got probability values from 0 to 1, therefore to display the 

prediction results, we set 0.5 as the threshold above or under which to decide whether to classify a pixel as 0 or 1. Below we 

present some samples of the prediction results and we compare them to the pre-computed classification and segmentation metrics. 

For the classification metrics, the fault classification results are shown (Figure 6) and the effective fault recognition on two 

different seismic volumes (Figure 7). Ideally, a good model should have high TN and TP than the FP and FN [36]. When 

comparing these parameters from the charts in figure 6 and 8, we can observe that our CNN model achieved high TN and TP, 

meaning that in its prediction task, a very good proportion of false faults have been detected as non-faults and a lot of true faults 

has been recognized as true faults in both training and validation data sets. 

 

Figure 6. From this chart we have observed that many false fault features have been detected as false allowing the model to 

distinguish them from those of the true faults. Then, comparing the TN and TN we realise that our CNN performed good 

prediction of true faults during the training and validation steps. 
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(a) 

 

(b) 

 
Figure 7. Illustration of fault segmentation performance on random samples: (a) is from the training dataset and (b) is 

from the validation dataset. 

 

One may need to get more information about the non-fault or the false fault rates that the model has predicted. For that purpose, 

we used the precomputed FP and FN parameters as shown in the chart below (Figure 8). 

 
Figure 8. Non-fault classification metric of our trained model. When comparing this chart to the chart in figure 6, we can 

see that insubstantial non- fault features are detected as faults. It means that our model is recognizing faults very well in 

both training and validation data sets. 

FP is computed to show what proportion of non-fault features that our CNN model predicted as fault features. As observed in this 

chart (Figure 7) and when comparing it to the chart in figure 6, for both training and validation data, the model has recognized an 

insubstantial number of non-fault features taken for faults features. By looking at some other results below (Figure 9), we can 

notice for a given and complete seismic volume, it may be more likely that there may be many faults that interpreters cannot see. 

In fact, based on some subjective reasons, during the manual labelling of faults to create the training fault labels, we may not label 

each of them; so, some relatively small and non-obvious faults may have been excluded. Consequently, the model may miss some 

faults on one hand and make mistakes in prediction when the prediction image is containing complicated fault features and 

prediction results may exclude the relatively small faults. Therefore, we have calculated the precision recall metric to appreciate 

how our model is performing in this case. 

 

 

0

50000

100000

150000

200000

FP  FN  

199110 

93546 

37423 
17930 

FP FN

Training 199110 93546

Validation 37423 17930

non-fault classification rate 

http://www.ijasre.net/
https://doi.org/10.31695/IJASRE.2022.8.7.2


International Journal of Advances in Scientific Research and Engineering (ijasre), Vol 8 (7), July-2022 

www.ijasre.net             Page 19 

DOI: 10.31695/IJASRE.2022.8.7.2 

 

(a) 

 

(b) 

 
Figure 9. Faults are recognized in a complicated 3D seismic image (a) while the recognition is better, clean and accurate 

for not complicated 3D seismic image (b). 

The precision metric gives the idea of what percentage of faults are correctly predicted by the model while the recall indicates 

what percentage of true faults the model detected. As shown in the above chart (Figure 10), our CNN model shows more or less 

the same values for both training and validation data sets meaning that all faults that the model predicted are all true faults. 

 

Figure 10. Precision-recall plot is used to evaluate the fault detection and prediction on both training and validation data 

sets. Results show that our CNN performed very well in fault recognition as. 

In the chart above, we can see that 86,7% of the validation predictions are correctly classified as true faults from 86,8% of actual 

true fault features. However, we need to know how well our model can work on unseen data to recognize fault features. For this 

purpose, we have performed the model test. In this stage, the testing images are all 3D seismic volumes that have not been used, 

neither into training process, nor in validation one. They are considered as new data only used to test the relevance of our model. 

Results below (Figure 10) have confirmed that our model is performing well enough in the recognition of faults from other 3D 

seismic images than those used to train and validate the model. 
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(a)

 

(b)

 

Figure 11. Faults recognition on the testing images; (a) shows accurate and clean recognized faults (b) also shows good 

results but we can still be viewing same ambiguities on the time slice probably due to its complicated nature in fault 

features displaying. 

To give an idea of how qualitatively the model works in fault recognition on the testing and unseen data, we have reported (Figure 

11) the mean values of the calculated segmentation metric for both training and validation data.  

 
Figure 12. Our CNN model shows more or less the same values for both training and validation data sets. According to the 

observed mean IoU values our CNN model can realize good segmentation performance on both training and validation 

data sets. 

The Intercept over Union (IoU) segmentation metric reflects the correlation between the ground truth and prediction. The higher is 

the IoU value, the higher is the correlation between the ground truth and prediction and vice versa.  

3.2 Discussions 

In this research, we are investigating the possibility of using a small training image set to train a CNN model for 3D seismic fault 

recognition. Since we have used a small amount of data as the training set (only 672 pair of images), the generalization 

performance of the model could be sacrificed. That means, our model may not make good predictions on other volumes, which 

are not acquired from the same area of the selected training samples. However, this does not affect the practical application of the 

proposed model. In fact, the purpose of our research was not to address the model generalization issues that we will consider in 

another research.  

As the distribution of fault features depended on the geology under the study region, the proposed method will perform well when 

the testing or predicting data and training data come from the same seismic survey. That is why the performance cannot be 

guaranteed when they are from different volumes. Indeed, by simply labelling several seismic sections, from different surveys we 

can obtain more accurate predictions on most seismic images from different surveys. However, it’s often difficult to obtain a large 
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amount of labelled real data which are required to train a very good CNN model. Consequently, synthetic data are usually used as 

training sets in most cases but models trained by only synthetic data may results in a poor performance. For example, when we are 

predicting land data having much lower signal-to-noise ratios, whereas the use of real data to train networks should result in 

predictions that are more accurate. Thus, with our proposed method we can use real data as the training set without any concerns 

about insufficient data and achieve good results in fault recognition.  

To train the model, interpreters need only to pick and label a few 3D seismic images, which is very easy to accomplish and with 

image data augmentation tips, they can generate enough data for training. Nevertheless, if we want to enhance the generalization 

performance of our trained model, we can use the strategy of transfer learning by labelling some other samples from the same or a 

new seismic volume to increase the diversity of the training dataset. 

4. CONCLUSIONS 

We have implemented a supervised fully CNN model to efficiently and accurately detect faults in 3D seismic images. This was 

possible even using a small training dataset. The fault recognition was performed as a binary segmentation problem. We used a 

modified Unet architecture to save the computational cost while keeping to preserve good performance and, the trained model 

achieved good enough performance in detection of faults from 3D seismic images when looking at both the prediction results and 

values of the evaluation metrics. Although the model was trained using few fields seismic image collected from different surveys, 

the testing results showed that fault recognition works very well for any 3D seismic image from the same surveys. After the model 

has been well trained, to predict faults in a 256x256x256 sized seismic image, our trained model takes only milliseconds and the 

displayed results after prediction are cleaner and more accurate than those of any other conventional fault detection method. At the 

same time, the application of this model is of interest with a double advantage: saving the operational time and maximizing the 

accuracy of faults interpretation in 3D seismic images. 
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