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ABSTRACT  

The purpose of this paper is to study the coefficient estimates of the class of functions in     
   ( )consisting of starlike functions. 

The sharp upper bounds for the initial coefficients and the Fekete-Szego functional of the functions in the class were established 

using the Opoola Differential Operator. 
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1.  INTRODUCTION  

Let A denote the class of function f (z) analytic in the open unit disk U = {z ∈ C: |z| < 1} and let S ∈ A 

denote the class of analytic functions f (z) in U which are univalent in U and of the form 

 

f(z) = z + ∑    
  

   , (1.1) 

 Let     
   ( )denote the class of analytic functions f (z) in U which are normalized by f (0) = 0,   ( )   . 

Given f (z) and g(z) to be analytic functions, then f(z) is subordinate to g(z), if and only if there exist a 

function w(z) analytic in U such that w(0) = 0, |w(z)| < 1 for |z| < 1 and    f (z) = g(w(z). Therefore, 

f (z) ≺ g(z) ⇐⇒ f (0) = g(0) 

 

And,  

 

f (|z| < 1)(|z| <1) 

1.1 Opoola differential Operator 

Let A denote the class of functions  ( ) analytic and univalent in the Unit disk    * ∈   | |  

 +, and have the form (   ). The Opoola Differential Operator is defined as   (     ) ( )     with 

  (     ) ( )   ( ) 

  (     ) ( )      ( )   (   )  (  (     ) ) ( ) 

  (     ) ( )   ,  
    ( )- 
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For the function in the form of (   ) 

      
  ( )    ∑   (       )     

 

   

                                       (   ) 

Definition 1.1. A function  ( ) is said to be subordinate to  ( ) where  ( ) and  ( ) are both 

analytic in the unit disk   and denoted as: 

 ( ) ≺  ( )     ∈     

Such that  

 ( )   ( ( ))          ∈    

 If the function  ( ) is univalent in    then  ( ) is said to be subordinate to  ( ) if  

 ( )   ( )  and  ( )   ( )      

If  there exist a Schwarz function  ( ) , analytic in    with  ( )    | ( )|    

Let us denote the function  ( ) by 

 ( )  ∑    
 

 

   

                                                                                               (   ) 

 A function  ( ) ∈   is said to be in class     
   ( ) if and only if 

  

    (     ) ( )

  (     ) ( )
                    ∈   

Let   be the class of functions  ( ) of the form 

 ( )    ∑    
 

 

   

 

Which are analytic in the open disk    ∈   | |    and satisfying the condition 

   ( ( ))         ∈    

 The class      
   ( ) generalizes the class   

 ( ) studied by Raina and Sokol. It also generalizes the work or 

Bello and Opoola (2017). 

2. LITERATURE REVIIEW 

 

 Let     
   ( ) be the class of function analytic in the unit disk   and normalized by  ( )    ( )  

    and satisfying the condition. 

    (     ) ( )

  (     ) ( )
≺ √  ( )  ( )   ( )               ∈                                   (   ) 

Where the branch of square root is chosen to be   ( ( ))    
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It may be noted that the set  ( ) lies in the right half plane and it is not a starlike domain with respect to the 

origin 

Raina and Sokol (2000) studied the class   ( ) and obtained the following result: 

( )        : 

If  ( )    ∑     
 
    then, 

|  |    |  |  
 

 
|        |  |  

 

 
 

(  )        If  ( )    ∑     
 
    then, 

|      
 |      *      

 + 

When  ∈    

Fekete-Szego problem is when the upper estimate is obtained 

Bello and Opoola ( 2017) also obtained the Second Hankel Determinant for the class   ( ). 

(   )       : 

If  ( )    ∑     
 
    then, 

|       
 |   

In recent years the Upper estimates of determinant   ( ) has been given attention to, the Fekete Szego 

estimate   ( )  |     
 | and   ( ) = |       

 | have been greatly studied. 

3.  OBJECTIVES: 

In this work the coefficient bounds, fekete-Szego estimates and Second Hankel Determinant is being 

studied. 

4. PRELIMINARY LEMMAS 

In order to prove the main result the following lemmas are required. 

Lemma [2.1] 

If   ∈  Ω , for any complex number   |      
 |      *  | |+ 

Lemma [2.2] 

If  ( )         
     

   ∈    

Then |  
          |    
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5. MAIN RESULT 

Theorem       Let   ( ) be a function of the form (   ) be in the class     
   ( ) then 

|  |  
 

,  (     ) -   
 

|  |  
  

,(     ) -,  (     ) - 
 

  
 

 ,     -,  (     ) - 

 
  

 

,(      ) -,     -,  (     ) - 
 

|  |  
 

,(     ) -,  (     ) -
(   

 

,(     ) -,(     ) -
) 

 

5.1 PROOF 

Since the function defined by (   ) belongs to the class     
   ( ), 

    (     ) ( )

  (     ) ( )
≺ √  ( ( ))

 
  ( )   ( )                                   (   )      

Thus, 

    (     ) ( )    (     ) ( ) ( )    (     ) ( )√  ( ( ))
 
                  (    ) 

Where     ( )    | ( )|    for | |    

From the definition in (   ) we have 

  (     ) ( )

   ,  (     ) -    
  ,  (     ) -    

  ,  (     ) -    
 

   

 

    (     ) ( )

   ,  (     ) -      
  ,  (     ) -      

 

 ,  (     ) -      
    

  (     ) ( ) ( )

    
     

     
  ,  (     ) -      

  ,  (     ) -      
    

 

    (     ) ( )    (     ) ( ) ( )    *,  (     ) -        + 
  *,  (    

 ) -      *,  (     ) -        + 
  *,  (     ) -      ,  (    

 ) -     *,  (     ) -        + 
  ….. 

On comparing the initial bounds of equation (3.3) and (3.4) we obtain. 
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It is known that the coefficients of the bounded function ω(z) satisfies the inequality 

that |ck| ≤ 1, so from (3.5),we have the first inequality that 

 
 

Using the estimate that if ω(z) has the form(1.4) then 

 

|c2 − λ  
 | ≤ {max 1, |λ|}, for all ∈ C  

               (3.10) from (3.9) and (3.10) we obtain 

                  | [2 + β − µ)t]1 + (2 + β − µ)t]
n  | ≤    

(     )   

 (     ) 
 

 

               Which gives the inequality that 

 

                       |  |       
(         )   

 ,(         ) -,(         ) -,    (         ) - 
 

 

 Also from (3.7) we obtain 
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Next we establish some properties of ck and it is known that p(z) is given by 

 

 
   ( )

   ( )
          

     ( ) 

 
 

defines the Caratheodory function with the property that    ( )    in U and that            |  | ≤  2(k = 1, 2, 

3,…) Equating the coefficient above we obtain 

P2= 2(  
    ) 

and 

P3=  (  
          ) 

Hence      

|  
    | ≤ 1  
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and  

|  
          | ≤ 1 

 

 

 

which complete the proof 

 

 

 THEOREM 3.2 

If the function defined by (1.1) belong to the class     
   ( ) 

 

Proof : 

From (3.6) we have that 
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µ,β 

 

 

 

Applying Lemma [2.1], we obtain 

 

 

 Theorem 3.3 

If the function defined by (1.1) belong to the class    
   ( ),  

Then, 

 

+ 
  (     )

, (     ) - ,     - 
 

Proof:  

From equation (3.5), (3.6) and (3.7) where    are the coefficient of the Schwarz 
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function, 

Then, 

 
 

 

 
Therefore, 

|       
 | 

 
Applying Lemma [2.2], we obtain the result below 
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+
  (     )

, (     ) - ,     - 
 

 

Therefore we conclude that 

 

+ 
  (     )

, (     ) - ,     - 
 

 

Which completes the proof. 

 

6. CONCLUSION: 

 The Result Obtained in this work is the generalization of many known results previously studied by other 

authors. 
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