

International Journal of Advances in Scientific Research and Engineering (ijasre)

E-ISSN: 2454-8006

DOI: 10.31695/IJASRE.2023.9.7.8

Volume 9, Issue 7 July - 2023

Coefficient Estimate for a Subclass of Analytic Functions Defined by a Generalized Differential Operator

R.A Bello

Department of Mathematics and Statistics Faculty of Pure and Applied Sciences Malete, Kwara State

Nigeria.

ABSTRACT

The purpose of this paper is to study the coefficient estimates of the class of functions in $S_{\mu,\beta}^{n,t}(q)$ consisting of starlike functions. The sharp upper bounds for the initial coefficients and the Fekete-Szego functional of the functions in the class were established using the Opoola Differential Operator.

Key Words: Analytic Function, Coefficient Estimates, Fekete-Szego Functional, Hankel Determinant, Opoola Differential Operator, Univalent Function.

1. INTRODUCTION

Let *A* denote the class of function f(z) analytic in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and let $S \in A$ denote the class of analytic functions f(z) in *U* which are univalent in *U* and of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$
 (1.1)

Let $S_{\mu,\beta}^{n,t}(q)$ denote the class of analytic functions f(z) in U which are normalized by f(0) = 0, f'(0) = 1. Given f(z) and g(z) to be analytic functions, then f(z) is subordinate to g(z), if and only if there exist a function w(z) analytic in U such that w(0) = 0, |w(z)| < 1 for |z| < 1 and f(z) = g(w(z)). Therefore,

$$f(z) \prec g(z) \Leftarrow f(0) = g(0)$$

And,

1.1 Opoola differential Operator

Let A denote the class of functions f(z) analytic and univalent in the Unit disk $U = \{z \in C : |z| < 1\}$, and have the form (1.1). The Opoola Differential Operator is defined as $D^n(\mu, \beta, t)f(z): A \to A$ with

$$D^{0}(\mu,\beta,t)f(z) = f(z)$$
$$D^{1}(\mu,\beta,t)f(z) = tzf^{I}(z) - z(\beta - \mu)t + (1 + (\beta - \mu - 1)t)f(z)$$
$$D^{n}(\mu,\beta,t)f(z) = D[D_{t}^{n-1}f(z)]$$

https://ijasre.net/

Page 60

For the function in the form of (1.1)

$$D_{\mu,\beta,t}^{n}f(z) = z + \sum_{k=2}^{\infty} 1 + (k - \beta - \mu - 1)^{n}a^{k}z_{k}$$
(1.2)

Definition 1.1. A function f(z) is said to be subordinate to g(z) where f(z) and g(z) are both analytic in the unit disk U and denoted as:

$$f(z) \prec g(z), \ z \in U.$$

Such that

$$f(z) = g(\omega(z)), \quad z \in U$$

If the function g(z) is univalent in U, then f(z) is said to be subordinate to g(z) if

$$f(0) = g(0)$$
, and $f(U) \subset g(U)$

If there exist a Schwarz function $\omega(z)$, analytic in U with $\omega(0) = 0$, $|\omega(z)| < 1$

Let us denote the function $\omega(z)$ by

$$\omega(z) = \sum_{k=1}^{\infty} c_k z^k \tag{1.3}$$

A function $f(z) \in A$ is said to be in class $S_{\mu,\beta}^{n,t}(q)$ if and only if

$$R_e \frac{D^{n+1}(\mu,\beta,t)f(z)}{D^n(\mu,\beta,t)f(z)} > 0, \qquad Z \in U$$

Let *P* be the class of functions p(z) of the form

$$P(z) = 1 + \sum_{k=1}^{\infty} p_k z^k$$

Which are analytic in the open disk $U = z \in C$: |z| < 1 and satisfying the condition

$$R_e(P(z)) > 0 \quad p \in U.$$

The class $S_{\mu,\beta}^{n,t}(q)$ generalizes the class $S_n^*(q)$ studied by Raina and Sokol. It also generalizes the work or Bello and Opoola (2017).

2. LITERATURE REVIIEW

Let $S_{\mu,\beta}^{n,t}(q)$ be the class of function analytic in the unit disk *U* and normalized by $f(0) = f^{I}(0) - 1 = 0$ and satisfying the condition.

$$\frac{D^{n+1}(\mu,\beta,t)f(z)}{D^n(\mu,\beta,t)f(z)} < \sqrt{1+(z)^2} + (z) = q(z) \qquad z \in U$$
(1.4)

Where the branch of square root is chosen to be $q(\omega(0)) = 1$

https://ijasre.net/

It may be noted that the set q(U) lies in the right half plane and it is not a starlike domain with respect to the origin

Raina and Sokol (2000) studied the class $S^*(q)$ and obtained the following result:

(I)Theorem:

If $f(z) = z + \sum_{k=2}^{\infty} a^k z_k$ then,

 $|a_2| \le 1$, $|a_3| \le \frac{3}{4}|$ $|a_4| \le \frac{1}{2}$

(II) Theorem : If $f(z) = z + \sum_{k=2}^{\infty} a^k z_k$ then,

$$|a_3 - \lambda a_2^2| \le \max\{a_3 - \lambda a_2^2\}$$

When $\lambda \in C$.

Fekete-Szego problem is when the upper estimate is obtained

Bello and Opoola (2017) also obtained the Second Hankel Determinant for the class $S^*(q)$.

(III)Theorem:

If $f(z) = z + \sum_{k=2}^{\infty} a^k z_k$ then,

 $|a_2a_4-a_3^2|\leq$

In recent years the Upper estimates of determinant $H_{q(n)}$ has been given attention to, the Fekete Szego estimate $H_{2(1)} = |a_3 - a_2^2|$ and $H_{2(2)} = |a_2a_4 - a_3^2|$ have been greatly studied.

3. OBJECTIVES:

In this work the coefficient bounds, fekete-Szego estimates and Second Hankel Determinant is being studied.

4. PRELIMINARY LEMMAS

In order to prove the main result the following lemmas are required.

Lemma [2.1]

If $\omega \in \Omega$, for any complex number λ , $|\omega_2 - \lambda \omega_1^2| \le \max\{1, |\lambda|\}$

Lemma [2.2]

If $\omega(z) = c_1 z + c_2 z^2 + c_3 z^3 + \dots \in \Omega$

Then $|c_1^3 + c_3 + 2c_1c_2| \le 1$

5. MAIN RESULT

Theorem 3.1: Let f(z) be a function of the form (1.1) be in the class $S_{\mu,\beta}^{n,t}(q)$ then

$$\begin{split} |a_2| &\leq \frac{1}{[1+(1+\beta-\mu)t]^n} \\ |a_3| &\leq \frac{c_2}{[(2+\beta-\mu)t][1+(2+\beta-\mu)t]^n} + \frac{c_1^2}{2[2+\beta-\mu][1+(2+\beta-\mu)t]^n} \\ &\quad + \frac{c_1^2}{[(1+\beta--\mu)t][2+\beta-\mu][1+(2+\beta-\mu)t]^n} \\ |a_4| &\leq \frac{1}{[(3+\beta-\mu)t][1+(3+\beta-\mu)t]} \Big(1 + \frac{1}{[(1+\beta-\mu)t][(2+\beta-\mu)t]} \Big) \end{split}$$

5.1 PROOF

Since the function defined by (1.1) belongs to the class $S_{\mu,\beta}^{n,t}(q)$,

$$\frac{D^{n+1}(\mu,\beta,t)f(z)}{D^n(\mu,\beta,t)f(z)} \prec \sqrt{1 + (\omega(z))^2} + \omega(z) = q(z)$$
(3.1)

Thus,

$$D^{n+1}(\mu,\beta,t)f(z) - D^{n}(\mu,\beta,t)f(z)\omega(z) = D^{n}(\mu,\beta,t)f(z)\sqrt{1 + (\omega(z))^{2}}$$
(3.2)

Where $\omega(0) = 0, |\omega(z)| < 1$ for |z| < 1

From the definition in (1.2) we have

$$D^{n}(\mu,\beta,t)f(z) = z + [1 + (1 + \beta - \mu)t]^{n}a_{2}z^{2} + [1 + (2 + \beta - \mu)t]^{n}a_{3}z^{3} + [1 + (3 + \beta - \mu)t]^{n}a_{4}z^{4} + \cdots$$

$$D^{n+1}(\mu,\beta,t)f(z) = z + [1 + (1 + \beta - \mu)t]^{n+1}a_2z^2 + [1 + (2 + \beta - \mu)t]^{n+1}a_3z^3 + [1 + (3 + \beta - \mu)t]^{n+1}a_4z^4 + \cdots$$

$$D^{n}(\mu,\beta,t)f(z)\omega(z) = c_{1}z^{2} + c_{2}z^{3} + c_{3}z^{4} + [1 + (1 + \beta - \mu)t]^{n}a_{2}c_{1}z^{3} + [1 + (2 + \beta - \mu)t]^{n}a_{3}c_{1}z^{4} + \cdots$$

$$\begin{split} D^{n+1}(\mu,\beta,t)f(z) &- D^n(\mu,\beta,t)f(z)\omega(z) = z + \{[1+(1+\beta-\mu)t]^{n+1}a_2 - c_1\}z^2 + \{[1+(2+\beta-\mu)t]^{n+1}a_3 - \{[1+(1+\beta-\mu)t]^na_2c_1 - c_2\}z^3 + \{[1+(3+\beta-\mu)t]^{n+1}a_4 - [1+(2+\beta-\mu)t]^na_3c_1\{[1+(1+\beta-\mu)t]^na_2c_2 - c_3\}z^4 + \dots \} \end{split}$$

On comparing the initial bounds of equation (3.3) and (3.4) we obtain.

https://ijasre.net/

$$(i)a_2 = \frac{c_1}{[1 + (1 + \beta - \mu)t]^n} \tag{3.5}$$

$$(ii)a_{3} = \frac{c_{2}}{[2+\beta-\mu)t] \cdot [1+(2+\beta-\mu)t]^{n}} + \frac{c_{1}^{2}}{2[1+(2+\beta-\mu)t]^{n}[(2+\beta-\mu)t]} + \frac{c_{1}^{2}}{c_{1}^{2}}$$

$$(3.6)$$

$$+\frac{1}{[(1+\beta-\mu)t][(2+\beta-\mu)t][1+(2+\beta-\mu)t]^n})$$
(3.6)

$$(iii)a_{4} = \frac{1}{[(3+\beta-\mu)t][1+(3+\beta-\mu)t]} \left(\frac{c_{1}^{3}}{2[(1+\beta-\mu)t]} + \frac{c_{1}^{3}}{2[2+\beta-\mu)t]} + \frac{c_{1}^{3}}{[(1+\beta-\mu)t][(2+\beta-\mu)t]} + \frac{c_{1}c_{2}}{[(1+\beta-\mu)t]} + \frac{c_{1}c_{2}}{[(2+\beta-\mu)t]} + \frac{c_$$

It is known that the coefficients of the bounded function $\omega(z)$ satisfies the inequality that $|c_k| \le 1$, so from (3.5), we have the first inequality that

$$|a_2| = \frac{1}{[1 + (1 + \beta - \mu)t]^n}$$
(3.8)

Also

$$[2+\beta-\mu)t][1+(2+\beta-\mu)t]^{n}|a_{3}| = \left|c_{2}+\frac{c_{1}^{2}}{2}+\frac{c_{1}^{2}}{(1+\beta-\mu)t}\right|$$
$$[2+\beta-\mu)t][1+(2+\beta-\mu)t]^{n}|a_{3}| = \left|c_{2}+\frac{c_{1}^{2}}{2}\left(\frac{(1+\beta-\mu)t-2}{2(1+\beta-\mu)t}\right)c_{1}^{2}\right|$$
(3.9)

Using the estimate that if $\omega(z)$ has the form(1.4) then

$$|c_2 - \lambda c_1^2| \leq \{\max_1 1, |\lambda|\}, \text{ for all } \in \mathbb{C}$$

(3.10) from (3.9) and (3.10) we obtain

$$([2+\beta-\mu)t]^{1} + (2+\beta-\mu)t]^{n}a_{3} \leq \frac{(1+\beta-\mu)t-2}{2(1+\beta-\mu)t}$$

Which gives the inequality that

$$|a_3| \leq \frac{(1+\beta-\mu)t-2}{2[(1+\beta-\mu)t][(2+\beta-\mu)t][1+(2+\beta-\mu)t]^n}$$

Also from (3.7) we obtain

https://ijasre.net/

$$\begin{split} |[(3+\beta-\mu)t][1+(3+\beta-\mu)t]a_4| &= \left|\frac{c_1^3}{2[(1+\beta-\mu)t]} + \frac{c_1^3}{2[2+\beta-\mu)t]} + \frac{c_1^3}{[(1+\beta-\mu)t][(2+\beta-\mu)t]} \right. \\ &+ \frac{c_1c_2}{[(1+\beta-\mu)t]} + \frac{c_1c_2}{[(2+\beta-\mu)t]} + c_1c_2 + c_3 \right| \\ &= \left|\frac{[(2+\beta-\mu)t] + [(1+\beta-\mu)t] + 2}{2[(1+\beta-\mu)t]} - c_1^3\right] \end{split}$$

$$+\frac{[2+\beta-\mu)t][1+\beta-\mu)t]+[2+\beta-\mu)t]+[1+\beta-\mu)t]}{[2+\beta-\mu)t][1+\beta-\mu)t]}c_{1}c_{2}+c_{3}$$

$$= \left| \frac{\left[(2+\beta-\mu)t \right] + \left[(1+\beta-\mu)t \right]}{2\left[(1+\beta-\mu)t \right] \left[(2+\beta-\mu) \right]} c_1^3 + \frac{2}{2\left[(1+\beta-\mu)t \right] \left[(2+\beta-\mu) \right]} c_1^3 \right.$$

$$+\frac{[2+\beta-\mu)t][1+\beta-\mu)t]}{[2+\beta-\mu)t][1+\beta-\mu)t]}c_{1}c_{2}+\frac{[2+\beta-\mu)t]+[1+\beta-\mu)t]}{[2+\beta-\mu)t][1+\beta-\mu)t]}c_{1}c_{2}+c_{3}\bigg|$$

$$= \frac{\left[(2+\beta-\mu)t\right] + \left[(1+\beta-\mu)t\right]}{2\left[(1+\beta-\mu)t\right]\left[(2+\beta-\mu)t\right]} \left(c_1^3 + 2c_2 + c_3\right)$$

$$-\frac{2[(1+\beta-\mu)t][(2+\beta-\mu)t] - [(1+\beta-\mu)t] - [(2+\beta-\mu)t]}{2[(1+\beta-\mu)t][(2+\beta-\mu)t]}c_{3} + c_{1}\left(c_{2} + \frac{c_{1}^{2}}{[1+\beta-\mu)t][2+\beta-\mu)t]}\right)\Big|$$

Next we establish some properties of c_k and it is known that p(z) is given by

$$\frac{1+\omega(z)}{1-\omega(z)} = 1 + p_1 z + p_z z^2 + \dots = P(z)$$

defines the Caratheodory function with the property that $R_e p(z) > 0$ in *U* and that $|p_k| \le 2(k = 1, 2, 3,...)$ Equating the coefficient above we obtain

$$P_2 = 2(c_1^2 + c_2)$$

and

$$P_3 = 2(c_1^3 + 2c_1c_2 + c_3)$$

Hence

 $|c_1^2 + c_2| \le 1$

https://ijasre.net/

$$|c_1^3 + 2c_1c_2 + c_3| \le 1$$

$$= \left| \frac{\left[(2+\beta-\mu)t \right] + \left[(1+\beta-\mu)t \right]}{2\left[(1+\beta-\mu)t \right] \left[(2+\beta-\mu)t \right]} + \frac{2\left[(1+\beta-\mu)t \right] \left[(2+\beta-\mu)t \right] - \left[(1+\beta-\mu)t \right] - \left[(2+\beta-\mu)t \right]}{2\left[(1+\beta-\mu)t \right] \left[(2+\beta-\mu)t \right]} + \frac{1}{\left[1+\beta-\mu)t \right] \left[2+\beta-\mu \right]} \right|$$

$$|[(3+\beta-\mu)t][1+(3+\beta-\mu)t]a_4| \le 1 + \frac{1}{[1+\beta-\mu)t][2+\beta-\mu]t}|a_4| \le \frac{1}{[(3+\beta-\mu)t][1+(3+\beta-\mu)t]} \left(1 + \frac{1}{[(1+\beta-\mu)t][2+\beta-\mu]t]}\right)$$

which complete the proof

THEOREM 3.2

If the function defined by (1.1) belong to the class $S^{n,t}_{\mu,\beta}(q)$

$$\begin{aligned} |a_3 - \lambda a_2^2| \le \\ max\left(\frac{1}{[1 + (2 + \beta - \mu)t]^n[(2 + \beta - \mu)t]}, \left|\lambda - \frac{[1 + (+\beta - \mu)t]^{2n}[(1 + \beta - \mu)t][2 + (1 + \beta - \mu)t]c_1^2}{2[1 + (2 + \beta - \mu)t]^n[(2 + \beta - \mu)t]}\right|\right) \\ (\lambda \in \mathbb{C}) \end{aligned}$$

Proof : From (3.6) we have that

$$\begin{split} |a_{3} - \lambda a_{2}^{2}| &= \left| \frac{c_{2}}{[1 + (2 + \beta - \mu)t]^{n}[(2 + \beta - \mu)t]} - \frac{1}{[1 + (1 + \beta - \mu)t]^{2n}[(1 + \beta - \mu)t]^{2}} \right| \\ \left(\lambda - \frac{[1 + (1 + \beta - \mu)t]^{2n}[(1 + \beta - \mu)t]^{2} + [1 + (1 + \beta - \mu)t]^{2n}[(1 + \beta - \mu)t]}{2[1 + (2 + \beta - \mu)t]^{n}[(2 + \beta - \mu)t]} \right\} c_{1}^{2} \right) \\ &= \left| \frac{c_{2}}{[1 + (2 + \beta - \mu)t]^{n}[(2 + \beta - \mu)t]} - \frac{1}{[1 + (1 + \beta - \mu)t]^{2n}[(1 + \beta - \mu)t]^{2}} \right| \\ &\left(\lambda - \frac{[1 + (1 + \beta - \mu)t]^{2n}[(1 + \beta - \mu)t] \langle 2 + [(1 + \beta - \mu)t] \rangle}{2[1 + (2 + \beta - \mu)t]^{n}[(2 + \beta - \mu)t]} \right) c_{1}^{2} \\ & \left(\lambda - \frac{[1 + (1 + \beta - \mu)t]^{2n}[(1 + \beta - \mu)t] \langle 2 + [(1 + \beta - \mu)t] \rangle}{2[1 + (2 + \beta - \mu)t]^{n}[(2 + \beta - \mu)t]} \right) c_{1}^{2} \\ \end{aligned}$$

$$= \left| \frac{c_2}{[1+(2+\beta-\mu)t]^n [(2+\beta-\mu)t]} - \frac{1}{[1+(1+\beta-\mu)t]^{2k} [(1+\beta-\mu)t]^2} \\ \left(\frac{2[1+(2+\beta-\mu)t]^n [(2+\beta-\mu)t]\lambda}{2[1+(2+\beta-\mu)t]^n [(2+\beta-\mu)t]} \right) \\ - \frac{[1+(1+\beta-\mu)t]^{2n} [(1+\beta-\mu)t]^2 + [1+(1+\beta-\mu)t]^{2n} [(1+\beta-\mu)t]}{2[1+(2+\beta-\mu)t]^n [(2+\beta-\mu)t]} \right) c_1^2 \right| \\ = \left| \frac{1}{[1+(2+\beta-\mu)t]^n [(2+\beta-\mu)t]} \left[c_2 - \frac{1}{[1+(1+\beta-\mu)t]^{2n} [(1+\beta-\mu)t]^2} \right] \right| c_1^2$$

$$\left(1 + (2 + \beta - \mu)t]^{n}[(2 + \beta - \mu)t]\lambda - \frac{[1 + (1 + \beta - \mu)t]^{2n}[(1 + \beta - \mu)t](2 + (1 + \beta - \mu)t]}{2}\right)c_{1}^{2}\right]$$

Applying Lemma [2.1], we obtain

$$= \frac{1}{[1+(2+\beta-\mu)t]^n[(2+\beta-\mu)t]} max [1, |[1+(2+\beta-\mu)t]^n[(2+\beta-\mu)t]\lambda]$$
$$-\frac{[1+(1+\beta-\mu)t]^{2n}[(1+\beta-\mu)t]^2 + [1+(1+\beta-\mu)t]^{2n}[(1+\beta-\mu)t]}{2} \Big| \Big]$$

$$= max \left[\frac{1}{[1 + (2 + \beta - \mu)t]^n [(2 + \beta - \mu)t]}, \left| \lambda - \frac{[1 + (1 + \beta - \mu)t]^{2n} [(1 + \beta - \mu)t](2 + (1 + \beta - \mu)t]}{[1 + (2 + \beta - \mu)t]^n [(2 + \beta - \mu)t]} \right| \right]$$

Theorem 3.3

If the function defined by (1.1) belong to the class $S_{\mu,\beta}^{n,t}(q)$,

Then,

$$\begin{split} |a_2 a_4 - a_3^2| &\leq \frac{1}{[1 + (1 + \beta - \mu)t]^n [(1 + \beta - \mu)t] [1 + (3 + \beta - \mu)t]^n [(3 + \beta - \mu)t]} + \frac{1}{[(1 + \beta - \mu)t]^2} \\ &+ \frac{[2 + \beta - \mu)t] + [(1 + \beta - \mu)t] - [(2 + \beta - \mu)t] [(1 + \beta - \mu)t]^2}{[2(1 + \beta - \mu)t] [(2 + \beta - \mu)t] [1 + (1 + \beta - \mu)t]^n [1 + \beta - \mu] [1 + (3 + \beta - \mu)t]^n [3 + \beta - \mu]t} \\ &+ \frac{[2 + \beta - \mu)t] + [(1 + \beta - \mu)t] + 2 - 2[(2 + \beta - \mu)t] [(1 + \beta - \mu)t]}{[2(1 + \beta - \mu)t] [(2 + \beta - \mu)t] [1 + (1 + \beta - \mu)t]^n [1 + \beta - \mu] [1 + (3 + \beta - \mu)t]^n [3 + \beta - \mu]t} \end{split}$$

 $+\frac{2{-}(1{+}\beta{-}\mu)}{[2(1{+}\beta{-}\mu)t]^2[2{+}\beta{-}\mu]^2}$

Proof:

From equation (3.5), (3.6) and (3.7) where c_k are the coefficient of the Schwarz

https://ijasre.net/

function,

$$a_{2}a_{4} - a_{3}^{2} = \frac{c_{1}}{[1 + (1 + \beta - \mu)t]^{n}[(1 + \beta - \mu)t][1 + (3 + \beta - \mu)t]^{n}[(3 + \beta - \mu)t]} \left(\frac{[(2 + \beta - \mu)t + (1 + \beta - \mu)t + 2]}{2[(1 + \beta - \mu)t][(2 + \beta - \mu)t]}c_{1}^{3}\right)$$

$$+ \frac{\left[(1+\beta-\mu)t\right]\left[(2+\beta-\mu)t\right] + \left[(2+\beta-\mu)t + (1+\beta-\mu)t\right]}{\left[(1+\beta-\mu)t\right]\left[(2+\beta-\mu)t\right]}c_{1}c_{2} + c_{3}\right)}{-\frac{1}{\left[(2+\beta-\mu)t\right]^{2}}\left(\frac{c_{2}}{\left[1+(2+\beta-\mu)t\right]^{n}} + \frac{\left[2+(1+\beta-\mu)t\right]}{2\left[(1+\beta-\mu)t\right]}c_{1}^{2}\right)}{\left[(1+\beta-\mu)t\right]^{n}\left[(1+\beta-\mu)t\right]\left[1+(3+\beta-\mu)t\right]^{n}\left[(3+\beta-\mu)t\right]}\left(c_{1}^{3}+2c_{1}c_{2}+c_{3}\right)\right.} \\ - \frac{\frac{c_{1}}{\left[(1+\beta-\mu)t\right]^{2}}\left(c_{2}+c_{1}^{2}\right)}{\left[(1+\beta-\mu)t\right]\left[(2+\beta-\mu)t\right]\left[(2+\beta-\mu)t\right]\left[(1+\beta-\mu)t\right]}c_{1}^{2}\left(c_{2}+c_{1}^{2}\right)} \\ - \frac{\left[2+\beta-\mu)t\right]+\left[(1+\beta-\mu)t\right]-\left[(2+\beta-\mu)t\right]\left[(1+\beta-\mu)t\right]}{\left[2(1+\beta-\mu)t\right]\left[(2+\beta-\mu)t\right]\left[1+(1+\beta-\mu)t\right]^{n}\left[1+\beta-\mu\right]\left[1+(3+\beta-\mu)t\right]^{n}\left[3+\beta-\mu\right]t}c_{1}^{2}\left(c_{2}+c_{1}^{2}\right)} \\ - \frac{\left[2+\beta-\mu)t\right]+\left[(1+\beta-\mu)t\right]+2-2\left[(2+\beta-\mu)t\right]\left[(1+\beta-\mu)t\right]}{\left[2(1+\beta-\mu)t\right]\left[(2+\beta-\mu)t\right]\left[1+(1+\beta-\mu)t\right]^{n}\left[1+\beta-\mu\right]\left[1+(3+\beta-\mu)t\right]^{n}\left[3+\beta-\mu\right]t}c_{1}^{4}} \\ - \frac{2-(1+\beta-\mu)}{2-(1+\beta-\mu)t\right]\left[(2+\beta-\mu)t\right]}c_{1}^{4} + \frac{2-(1+\beta-\mu)t}{2-(1+\beta-\mu)t}c_{1}^{4}} + \frac{2-(1+\beta-\mu)t}{2-(1+\beta-\mu)$$

$$-\frac{2-(1+\beta-\mu)}{[2(1+\beta-\mu)t]^2[2+\beta-\mu]^2}c_1^4$$

Therefore,

$$\begin{split} |a_{2}a_{4} - a_{3}^{2}| \\ = \left| \frac{c_{1}}{[1 + (1 + \beta - \mu)t]^{n}[(1 + \beta - \mu)t][1 + (3 + \beta - \mu)t]^{n}[(3 + \beta - \mu)t]} \left(c_{1}^{3} + 2c_{1}c_{2} + c_{3}\right) \right. \\ \left. - \frac{1}{[(1 + \beta - \mu)t]^{2}} \left(c_{2} + c_{1}^{2}\right) \right. \\ \left. - \frac{[2 + \beta - \mu)t] + [(1 + \beta - \mu)t] - [(2 + \beta - \mu)t][(1 + \beta - \mu)t]}{[2(1 + \beta - \mu)t][(2 + \beta - \mu)t][1 + (1 + \beta - \mu)t]^{n}[1 + \beta - \mu][1 + (3 + \beta - \mu)t]^{n}[3 + \beta - \mu]t} c_{1}^{2} \left(c_{2} + c_{1}^{2}\right) \\ \left. - \frac{[2 + \beta - \mu)t] + [(1 + \beta - \mu)t] + 2 - 2[(2 + \beta - \mu)t][(1 + \beta - \mu)t]}{[2(1 + \beta - \mu)t][(2 + \beta - \mu)t][1 + (1 + \beta - \mu)t]^{n}[1 + \beta - \mu][1 + (3 + \beta - \mu)t]^{n}[3 + \beta - \mu]t} c_{1}^{4} \\ \left. - \frac{2 - (1 + \beta - \mu)}{[2(1 + \beta - \mu)t]^{2}[2 + \beta - \mu]^{2}} c_{1}^{4} \right| \\ \end{split}$$

Applying Lemma [2.2], we obtain the result below

$$\leq \left| \frac{c_1}{[1 + (1 + \beta - \mu)t]^n [(1 + \beta - \mu)t] [1 + (3 + \beta - \mu)t]^n [(3 + \beta - \mu)t]} \left(c_1^3 + 2c_1c_2 + c_3 \right) \right|$$

$$\begin{split} + \left| \frac{1}{[(1+\beta-\mu)t]^2} \left(c_2 + c_1^2 \right) \right| \\ + \left| \frac{[2+\beta-\mu)t] + [(1+\beta-\mu)t] - [(2+\beta-\mu)t][(1+\beta-\mu)t]}{[2(1+\beta-\mu)t][(2+\beta-\mu)t][(2+\beta-\mu)t][(1+\beta-\mu)t] + \beta-\mu][1+(3+\beta-\mu)t]^n [3+\beta-\mu]t} c_1^2 \left(c_2 + c_1^2 \right) \right| \\ + \left| \frac{[2+\beta-\mu)t] + [(1+\beta-\mu)t] + 2 - 2[(2+\beta-\mu)t][(1+\beta-\mu)t]}{[2(1+\beta-\mu)t][(2+\beta-\mu)t][(1+\beta-\mu)t][1+(3+\beta-\mu)t]^n [3+\beta-\mu]t} c_1^4 \right| \\ + \left| \frac{2 - (1+\beta-\mu)}{[2(1+\beta-\mu)t][(2+\beta-\mu)t]^2 [2+\beta-\mu]^2} c_1^4 \right| \\ \leq \frac{1}{[1+(1+\beta-\mu)t]^n [(1+\beta-\mu)t] - [(2+\beta-\mu)t] - [(2+\beta-\mu)t]} + \frac{1}{[(1+\beta-\mu)t]^2} \\ + \frac{[2+\beta-\mu)t] + [(1+\beta-\mu)t] - [(2+\beta-\mu)t][(1+\beta-\mu)t]}{[2(1+\beta-\mu)t][(2+\beta-\mu)t][1+(1+\beta-\mu)t]^n [1+\beta-\mu][1+(3+\beta-\mu)t]^n [3+\beta-\mu]t} \\ + \frac{[2+\beta-\mu)t] + [(1+\beta-\mu)t] + 2 - 2[(2+\beta-\mu)t][(1+\beta-\mu)t]}{[2(1+\beta-\mu)t][(2+\beta-\mu)t][(2+\beta-\mu)t] - [(1+\beta-\mu)t]^n [1+\beta-\mu]t] + (3+\beta-\mu)t]^n [3+\beta-\mu]t} \\ + \frac{2 - (1+\beta-\mu)t}{[2(1+\beta-\mu)t][(2+\beta-\mu)t][1+(1+\beta-\mu)t]^n [1+\beta-\mu][1+(3+\beta-\mu)t]^n [3+\beta-\mu]t} \\ + \frac{2 - (1+\beta-\mu)t}{[2(1+\beta-\mu)t][(2+\beta-\mu)t][1+(1+\beta-\mu)t]^n [1+\beta-\mu]t] + (3+\beta-\mu)t]^n [3+\beta-\mu]t} \\ + \frac{2 - (1+\beta-\mu)t}{[2(1+\beta-\mu)t][(2+\beta-\mu)t][1+(1+\beta-\mu)t]^n [1+\beta-\mu]t] + (3+\beta-\mu)t]^n [3+\beta-\mu]t} \\ + \frac{2 - (1+\beta-\mu)t}{[2(1+\beta-\mu)t][(2+\beta-\mu)t][1+(1+\beta-\mu)t]^n [1+\beta-\mu]t] + (3+\beta-\mu)t]^n [3+\beta-\mu]t} \\ + \frac{2 - (1+\beta-\mu)t}{[2(1+\beta-\mu)t][2(2+\beta-\mu)t]} \\ + \frac{2 - (1+\beta-\mu)t}{[2(1+\beta-\mu)t][2(2+\beta-\mu]^2} \\ \end{bmatrix}$$

Therefore we conclude that

$$\begin{split} |a_{2}a_{4}-a_{3}^{2}| &= \frac{1}{[1+(1+\beta-\mu)t]^{n}[(1+\beta-\mu)t][1+(3+\beta-\mu)t]^{n}[(3+\beta-\mu)t]} + \frac{1}{[(1+\beta-\mu)t]^{2}} \\ &+ \frac{[2+\beta-\mu)t] + [(1+\beta-\mu)t] - [(2+\beta-\mu)t][(1+\beta-\mu)t]}{[2(1+\beta-\mu)t][(2+\beta-\mu)t][(1+\beta-\mu)t]^{n}[1+\beta-\mu][1+(3+\beta-\mu)t]^{n}[3+\beta-\mu]t} \\ &+ \frac{[2+\beta-\mu)t] + [(1+\beta-\mu)t] + 2 - 2[(2+\beta-\mu)t][(1+\beta-\mu)t]}{[2(1+\beta-\mu)t][(2+\beta-\mu)t][(1+\beta-\mu)t]^{n}[1+\beta-\mu][1+(3+\beta-\mu)t]^{n}[3+\beta-\mu]t} \\ &+ \frac{2 - (1+\beta-\mu)}{[2(1+\beta-\mu)t]^{2}[2+\beta-\mu]^{2}} \end{split}$$

Which completes the proof.

6. CONCLUSION:

The Result Obtained in this work is the generalization of many known results previously studied by other authors.

REFERENCES

- 1. Babalola, K.O. (2010), On $H_3(1)$ Hankel determinant for some classes of nivalent functions., Inequality Theory and Applications.6, 1 7(2010)
- 2. Bello, R.A. and Opola T.O (2017), Upper Bounds for Fekete-Szego Functions and the Second Hankel Determinants for a Class of Starlike., IOSR.Journal of Mathematics.13(2), 34-39 (2017)
- 3. E.Kedioglu, On Subclass of univalent functions with negative coeffi- cients. Applied Mathematics and computation, 146(2003)351-358
- 4. Fatunsi L.M Fatunsin, T.O. Opoola.(2017), New results on subclasses of analytic functions defined by Opoola differential Operator.Journal of Mathematics and System Sciencec, 7.289-295.doi:10.17265/2159-5291/2017.10.003)
- 5. Fekete, M. Szego(1933), *Einebemerkung uber ungerade functionen*. London Math.Soc.8 (1933)85-89.
- 6. A.O. Lasode, T.O. Opoola (2022d) Some properties of a family of univalent functions defined by a generalized Opoola differential Operator. General Mathematics, 30(1), 3-13
- Marjono and D.K. Thomas(2016), *The Second Hankel Determinant of Functions Convex in One Direction*. International Jornal of Mathematical Analysis Vol. 10,(2016)no. 9, 423-428

https://ijasre.net/

- 8. R.K.Raina and J.Sokol (2000), *On Coefficient Estimate For A Class of Starlike Functions*, 2000 Mathematics Subject Classification. Primary 30C45
- 9. R.O.Ayinla,T.O.Opoola (2019), *The Fekete Szego Functional and Second Hankel Determinant for a subclass of Analytic functions*. Applied Mathematica,10,1071-1078.doi:10.4236/am2019.1012074
- R.M.Ali and R.N. Seenivasagan(2007), Coefficient Bounds for P-Valent Func tions, Applied Mathematics and Computation, (2007)187, 35-46
- 11. S.K.Lee, V.Ravichandran and S.Shamani(2009), Coefficient Bounds, Vol. 10. Iss.3, Art. 71 (2009).