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ABSTRACT 

Induction motors are widely utilized in various industries because of simplicity in service, durability, and low cost, 

leading to the displacement of DC motors. However, control system challenges have hindered their full potential for 

high performance. Many low-performance drives utilize scalar control, which adjusts only the stator magnitudes to 

uphold a persistent stator flux. Vector control emerged to address this limitation by enabling induction motor control 

analogous to DC motors. Subsequently, Direct Torque Controlled (DTC) induction motor drives were developed. 

Unlike vector-controlled drives where stator currents serve as control variables, DTC controls stator flux linkages. 

DTC employs a Reference Flux (RF) estimator to determine RF based on motor speed and a PI controller to estimate 

reference torque using speed error as input. The calculated stator flux angle determines the sector number for 

generating switching signals, traditionally done through a RF estimator. This estimator has been enhanced with fuzzy 

logic to ensure adaptability, and further improved with an ANFIS-based approach to combine fuzzy logic and 

artificial neural networks. Performance evaluation involves metrics utilizing speed and torque errors to gauge 

controller effectiveness. Comparing the fixed RF estimator to the ANFIS-tuned RF estimator with manually tuned 

speed PI, there is a performance improvement of 72.73%, 72.749%, and 46.636% for ISE, ITSE, and ITAE, 

respectively. 
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_______________________________________________________________________________________________ 

I. INTRODUCTION 

Direct Torque Control (DTC) based drives for induction motor offer numerous advantages in industrial 

applications, characterized by their simplicity and resilience to machine parameter variations, ensuring rapid response 

times. However, they are not without drawbacks, such as variable switching frequency and torque ripples stemming 

from imprecise voltage vectors for stator flux linkage generation. To mitigate these ripples and enhance performance, 

several approaches have been devised. One strategy involves refining the comparator within the DTC framework. 

Modifications made on torque hysteresis comparator can include adjusting the hysteresis band or increasing the 

number of levels, necessitating corresponding adjustments to the lookup table [1]. Additionally, optimizing sector 

division by expanding the number of sectors can further refine performance. Another widely adopted method is Space 

Vector Pulse Width Modulation (SVPWM), which offers significant improvements in DTC drive performance.  

Artificial intelligence (AI) techniques are extensively applied in induction motor drives to enhance their 

performance. Unlike traditional methods, AI-based control strategies bypass the need for precise mathematical models 

to manage system nonlinearities and uncertainties. Key AI methodologies employed in DTC induction motor drives 

include fuzzy logic, artificial neural network (ANN), and artificial neuro-fuzzy systems (ANFIS). In the realm of DTC 

research, significant focus lies on Reference Flux (RF) estimation and reference torque estimation, crucial for 

calculating flux and torque errors respectively. Consequently, this study delves into investigating and refining these 

areas of interest within the DTC framework. Furthermore, to bolster performance, the research explores methods for 

adjusting the sector alteration of stator flux linkage [2]. This includes developing both fixed-angle and fuzzy-based 

angle approaches to optimize sector allocation.  
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DTC serves as an advanced controller scheme, focusing on the direct manipulation of two critical parameters such 

as torque and stator flux. Unlike traditional controllers, DTC does not rely on complex mathematical models or 

extensive calculations. Instead, it utilizes a hysteresis control approach to monitor and adjust torque and flux errors in 

real-time. The essence of DTC lies in its ability to not only regulate the magnitude but also the spatial position of the 

stator flux. By directly controlling these parameters, DTC ensures precise and efficient motor operation. In practical 

implementation, the control algorithm continuously evaluates the torque and flux errors. These errors represent the 

disparities between the desired and actual values of torque and flux. To maintain these errors within acceptable 

bounds, DTC employs hysteresis comparators. These comparators generate control signals according to the deviation 

of flux and torque with respect to reference values. Moreover, DTC considers the spatial orientation of the stator flux, 

further refining its control strategy. By monitoring the position of the stator flux, the control system can adjust the 

switching signals sent to the inverter [3]. These signals dictate the operation of the inverter, which, in turn, determines 

the voltage applied to the motor.  

The primary objective of DTC is twofold: to achieve rapid response times and minimize switching frequency. By 

constraining torque and flux errors within predefined hysteresis bands, DTC ensures swift and precise control while 

minimizing the number of switching events. This not only enhances motor performance but also reduces stress on the 

power electronics components, prolonging their lifespan [4]. To provide a visual representation of the spatial vectors 

involved in DTC, Fig. 1 illustrates the relationship between flux and current vectors within the induction machine. 

This graphical depiction aids in understanding the complex interplay of electrical parameters and their impact on 

motor performance.  

 
Fig. 1: Space vectors of flux and current in induction machine 

In the case of 3-phase induction motor, Equation 1 defines the real time stator flux angle, while Equation 2 

governs the electromagnetic torque. 
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from the inverter, both stator flux and electromagnetic torque can be effectively managed. This fundamental principle 

underpins the DTC of IM drives, wherein 
s
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the resistance of stator, the impact of inverter voltage on stator flux can be simplified, as represented by Equation 3. 
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 The flux plot is segmented into six sectors, labeled as α(1) through α(6). Sector 1, denoted as α(1), spans from -

300 to 300. Similarly, sector 2, α(2), covers the range from 300 to 900, and this segmentation pattern continues up to 

sector 6. Non-zero voltage space vectors are employed to swiftly alter stator flux linkage space vectors. Conversely, 

zero voltage space vectors do not induce movement in stator flux linkages, albeit the voltage drop across the stator 

resistance prompts a gradual shift. In Figure 2, V1(100) through V6(101) represent voltage space vectors, while 

V0(000) and V7(111) depict the zero voltage space vectors.  

 
Fig. 2: Voltage vectors and stator flux linkage  

 

Within the framework of DTC, effective control over stator flux linkage is achieved through meticulous selection 

of voltage space vectors [5]. The torque and flux are independently regulated by  manipulating the tangential and 

radial components of 
s

 . In DTC drives, the switching vectors (representing voltage space vectors) dispatched to the 

inverter are carefully chosen to ensure that the errors remain within their respective hysteresis bands throughout each 

sampling period. 

 

II. LITERATURE SURVEY 

Numerous researchers have contributed to the development of DTC-based induction motor drives, offering diverse 

control strategies to mitigate ripple and enhance speed control. A comprehensive literature review was undertaken to 

identify optimal methods for enhancing DTC drive performance, examining the evolution of DTC drive systems and 

available control strategies. Bassem et al. [6] focused on synthesizing two vector selection tables using a bus-clamping 

technique. This technique aimed to facilitate both clockwise and counterclockwise rotations of the induction motor. A 

comparative analysis was conducted between the proposed bus-clamping technique and a five-level torque-controlled 

DTC approach. Results demonstrated that the bus-clamping technique effectively reduced harmonic distortion, 

highlighting its potential for improving drive performance.  

Taheri et al. [7] devised a flux search controller employing an adaptive gradient descent method to determine flux 

values in a six-phase induction machine DTC model. This optimization algorithm efficiently identifies the optimal 

flux value, ensuring swift performance. Brahim et al. [8] proposed the integration of a shunt resistor for measuring dc-

link current in DTC setups. This measured current is utilized to reconstruct phase currents and voltages, enabling 

accurate estimation of motor flux and electromagnetic torque. Additionally, they implemented a zone shifting sector 

strategy and introduced a modified lookup table featuring synthesized voltage vectors. Venkataramana et al. [9] 

developed control schemes utilizing space vector modulation for a three-level diode-clamped inverter. Recognizing 

the inadequacy of conventional PI controllers in DTC for three-level inverters, they replaced them with Mamdani-type 

fuzzy-2 controllers. Comparative analysis revealed that fuzzy-2 DTC outperformed conventional PI controller DTC, 

showcasing its superior performance. 

Pandit et al. [10] devised an algorithm for voltage vector selection based on virtual voltage vectors. These virtual 

vectors were instrumental in minimizing torque ripple through the utilization of five-level torque comparators. These 

techniques were specifically tailored for DTC applications in an asymmetrical six-phase induction motor setup. 

Nikzad et al. [11] employed a model predictive control approach to determine suitable voltage vectors for reducing 

flux and torque errors. Their method involved the incorporation of zero voltage vectors with available options to 

achieve accurate voltage vectors with varying duty cycles. Korkmaz et al. [12] explored the impact of artificial neural 

networks (ANN) on DTC performance. They developed, trained, and tested two distinct ANN models. The first model 
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focused on identifying the flux sector region process, while the second model determined switching states based on 

data from flux hysteresis, torque hysteresis, and flux region outputs. Ibrahim et al. [13] proposed a constant switching 

frequency controller (CSFC) to regulate stator flux in DTC induction motor drives. This involved replacing the three-

level torque hysteresis comparator with CSFC. Additionally, they employed an extended Kalman filter for estimating 

stator and rotor fluxes as well as motor speed.  

Sampath et al. [14] introduced sliding mode control, a method that employs high-frequency switching to 

manipulate system states along a predefined hypersurface. While this approach is relatively straightforward in electric 

drives equipped with controlled on-off power converters, it does introduce challenges, particularly in the form of high-

frequency chattering. In sliding mode control, continuous functions define the control surface, and discontinuous 

control actions are applied to guide the system towards a desired trajectory.  

To mitigate the effects of chattering, a boundary layer is introduced in the switching surface. This boundary layer 

helps dampen the rapid oscillations associated with discontinuous control actions. Additionally, further enhancements 

have been made through the integration of a fuzzy logic controller, resulting in a hybrid approach known as fuzzy 

sliding mode control (FSMC). By combining the robustness of sliding mode control with the adaptability of fuzzy 

logic, FSMC offers improved performance and smoother operation in dynamic systems. 

 

III. MATERIALS AND METHOD 

Artificial Intelligence (AI) controllers play a vital role in enhancing the performance of variable frequency drives. 

Leveraging AI, it becomes feasible to develop drive systems with capabilities akin to learning, recalling, and 

executing trained patterns. As discussed in earlier sections, fuzzy logic finds application due to its adeptness in 

handling nonlinearities and uncertainties in parameters, even without a precise mathematical model. The efficacy of a 

fuzzy logic controller and its performance heavily rely on the expertise within the domain. Achieving performance 

enhancements often involves meticulous trial-and-error processes, especially in rule base formation and membership 

function (MF) selection. Similarly, when opting for neural networks, acquiring the necessary data for training the 

network can pose significant challenges. Success in training neural networks demands rigorous efforts and substantial 

resources. 

ANFIS based model, depicted in Fig. 3, amalgamates the benefits of both fuzzy logic and neural networks. It 

combines the linguistic-based knowledge representation of fuzzy logic with the data training capabilities of neural 

networks. This hybrid approach empowers the development of highly adaptive drive systems, leveraging the learning 

capabilities of neural networks while minimizing the need for extensive human intervention in fine-tuning fuzzy logic 

rule bases. In ANFIS, data training imparts intelligence to fuzzy logic through structured learning from neural 

networks. This enables ANFIS to replace the conventional fuzzy logic controller. Furthermore, in the context of DTC, 

ANFIS serves to provide RF, supplanting the role traditionally held by fuzzy logic. 

 

 
Fig. 3: ANFIS based estimator of RF 

 

The ANFIS structure introduced for the DTC-IM drive is depicted in Fig. 4. Proposed configuration integrates a 

five-layered feedforward NN, incorporating multiple estimator techniques. Proposed model comprises the following 

layers: 1
st
 layer serves as input layer. Fuzzy operation is carried out in the 2

nd
 layer. The 3

rd
 and 4

th
 layers contain 

operational blocks responsible for controlling units. The 5
th
 layer characterizes the de-fuzzy operation performed on 

the given data [15]. 
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Figure 4: Proposed ANFIS structure 

In the first layer in this work, two nodes are used for the torque error (T*-Te) and RF ( *). The inputs to the 

ANFIS structure under consideration are detailed here. Equations 4 and 5 depict the outputs generated by these layers. 

To alleviate computational load, geometrical MF has been selected for implementation within the proposed ANFIS 

[16]. 
*
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Within the 2
nd

 layer, each node remains fixed. In this context, Equation 6 is utilized to estimate the input weights, 

aiming to minimize errors while considering the firing strength of the rules. Here, 
*
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the degree of error and flux reference, respectively. Each node executes fuzzy AND as its node function. 
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In the 3
rd
 layer, every node functions as a fixed node tasked with normalizing weights. In this layer, every node 

calculates the ratio of its assigned rule's firing strength to the total sum of firing strengths across all rules. This 

computation yields the normalized value of firing strengths, as described by Equation 7. 
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Layer 4 comprises adaptive nodes, where the input MF and output are determined using a node function outlined 

in Equation 8. Within this equation, pi, qi, and ri represent the parameters of node. 
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 layer, a single fixed node handles the weighted output summation from layer 4. Equation 9 is utilized to 

compute the output from layer 5. 
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In this study, the ANFIS network was trained using data obtained from the estimator. The data was applied into 

the ANFIS editor, and the model depicted in Fig. 4 was established. The five-layer network was then trained over 200 

epochs using BPA with the provided input/output dataset. The toolbox constructed a fuzzy inference system (FIS), 

adjusting MF parameters through BPA. Subsequently, this ANFIS was integrated into existing systems and subjected 

to testing. MF underwent self-tuning to enhance overall performance. 

                    

IV. RESULTS AND DISCUSSIONS 

The performance of various RF estimators, including conventional fixed, fuzzy, ANN, and ANFIS-based 

estimators are evaluated in thin section. The MATLAB/SIMULINK model substitutes the conventional reference 

estimator with a fuzzy-based one to enhance performance. Subsequently, ANN and ANFIS-based estimators are 

introduced for further improvement. The torque responses of each estimator are compared, focusing on a load torque 

of 3.65 Nm at 0.5 seconds. Figure 5 depicts the torque response in all cases. Notably, the conventional fixed RF 

estimator exhibits higher torque ripple amplitudes. However, as we progress from the fuzzy-based to the ANN and 

ANFIS-based estimators, torque ripples diminish gradually.  

 

 
Fig. 5: Comparison of torque responses with a load of 3.65 Nm 

 

Figure 6 illustrates the speed responses of different RF estimators, including the fixed, fuzzy-based, ANN-based, 

and ANFIS-based estimators, under a threshold speed of 138.54 rad/s. It is evident that ANFIS-oriented estimators 

closely track the reference speed compared to other estimators, even under a load of 3.65 Nm. 

 

 
Fig. 6: Comparison of speed responses with a load of 3.65 Nm 

 

In this study, the RF value dynamically adjusts in response to variations in the load. Consequently, the actual flux 

varies correspondingly. Fig. 7 presents a comparison among actual and RF responses for both fixed and variable RF 

estimators. The RF value of fuzzy system fluctuates between 0.6 Wb and 0.8 Wb, causing the actual flux to vary 

accordingly. For the ANN-system, the actual flux ranges from 0.58 Wb to 0.63 Wb, while in the proposed ANFIS 

model, it varies between 0.54 Wb and 0.59 Wb. Notably, when a step load is introduced at 0.5 s, the ANFIS-based RF 
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estimator exhibits a lower requirement for actual flux. Across all four control strategies, the speed PI controller 

maintains consistent gain values acquired through manual tuning. 

 
Fig. 7: Comparison of flux responses with a load of 3.65 Nm for (a) Fixed (b) Fuzzy (c) ANN (d) ANFIS 

 

The optimal efficiency of a drive structure is computed by minimizing the value of a performance index. This 

index is quantified through Integral Square Error (ISE), Integral Time Absolute Error (ITAE), and Integral Time 

Square Error (ITSE), as defined in Equation (10), (11), and (12) respectively.  

2

0

( )

i
T

ISE e t dt                               (10) 

0

( )

i
T

ITAE t e t dt                           (11) 

2

0

( )

i
T

ITSE te t dt                           (12) 

These indices serve as indicators of performance improvement achieved through the utilization of an ANFIS-

model compared to a fuzzy-model in DTC. Table 1 presents the ISE values associated with the ANFIS-model. Control 

systems optimized to minimize ISE are effective at rapidly reducing large errors, encompassing both transient and 

steady-state behaviors. Therefore, evaluations based on ISE consider factors such as overshoot and rise time when 

assessing performance.  

 

Table 1: ISE of ANFIS based flux estimator with manual tuning 

Time Torque Flux Speed 

0.5 to 1s 0.834 0.0002760 0.000248 

1 to 1.5s 1.920 0.0000652 0.009078 

1.5 to 2s 1.209 0.0000680 0.001777 

Total 3.963 0.0004092 0.011103 

 

In the context of induction motor drive control, the primary objective frequently revolves around minimizing 

ITAE through controller parameter adjustments. Achieving this minimization results in faster settling time and 
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reduced steady-state error, both highly desirable traits for numerous control applications. Table 2 presents the ITAE 

values associated with the ANFIS-model. 

 

Table 2: ITAE of ANFIS model with manual tuning 

Time Torque Flux Speed 

0.5 to 

1s 

0.3745 0.007750 0.00823 

1 to 

1.5s 

0.8452 0.005598 0.08387 

1.5 to 

2s 

1.0400 0.008081 0.05190 

Total 2.2597 0.021429 0.14400 

 

ITSE places a stronger emphasis on large errors compared to ITAE due to the squared error term, making it 

particularly responsive to significant deviations from the desired response. This sensitivity can be advantageous in 

specific control applications. Similar to ITAE, the aim in control system design frequently involves minimizing ITSE 

through controller parameter adjustments. Table 3 displays the ITSE values associated with the ANFIS-model. 

 

Table 3: ITSE of ANFIS model with manual tuning 

Time Torque Flux Speed 

0.5 to 1s 0.620 0.000206 0.000187 

1 to 1.5s 2.274 0.000081 0.011320 

1.5 to 2s 2.113 0.000119 0.003108 

Total 5.015 0.000406 0.014615 

 

The total ISE value for the fixed model with manually tuned PI speed controller is 0.084274, while for the 

ANFIS-model with manually tuned speed PI controller, it is 0.01728. Comparing these values, there is a percentage 

improvement from the fixed model to the fuzzy-model of 47.54%, 48.617%, and 13.913% for ISE, ITSE, and ITAE, 

respectively. Similarly, comparing the fixed reference model to the ANN-model with manually tuned speed PI, there 

is a performance improvement of 72.73%, 72.749%, and 46.636% for ISE, ITSE, and ITAE, respectively. Therefore, 

it is evident that the ANFIS-model outperforms other estimators. Additionally, the percentage improvement of 

ANFIS-model with manually tuned speed PI controller in comparison to the fixed RF estimator with manually tuned 

speed PI controller is calculated as 79.2% for ITSE and 52.46% for ITAE. These results demonstrate that, akin to ISE 

values, ITSE and ITAE values also exhibit significant improvements.  

 

V. CONCLUSION 

This work delves into the significance of variable RF operation in enhancing the performance of induction motor 

drives. It introduces the concept of fuzzy-based variable RF estimation, detailing the development of MF for Te and 

conventional RF. Through analyses of responses and performance parameters, it is demonstrated that the proposed 

ANFIS estimator outperforms the conventional RF estimator in DTC induction motor drives. Furthermore, to further 

enhance performance, ANN and ANFIS-based RF models are introduced. By comparing the summation values of 

these estimators, it is evident that ANFIS achieves a reduction in ISE value of 74.4954%, while ANFIS achieves 

72.3%, and Fuzzy achieves 47.54% compared to the conventional fixed RF estimator. Comparing the readings and 

error values, it is concluded that the ANFIS-based RF estimator emerges as the superior choice among fixed, fuzzy, 

and ANN-based RF estimators. 
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