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ABSTRACT  

Early and accurate diagnosis of Black Sigatoka (BSD), a fungal disease affecting banana production, is crucial for 

minimizing crop losses. An empirical understanding of the disease stages is important in developing predictors with 

adequate recommendations to farmers. This paper explores the use of K-means clustering algorithms to classify BSD 

stages in banana leaf images without relying on manual labelling. We evaluate the effectiveness of various image 

features, including “infected area”, “colour histograms”, “statistical features”, and “texture features”. The results 

indicate that using solely “infected area” achieved a moderate cluster separation, as observed from a Silhouette score 

of 0.5374 compared to others whose Silhouette scores were 0.3299 and 0.1366 for “statistical feature” and “colour 

histogram feature” respectively. Combining features, particularly, infected-area with texture or statistics, offered a 

promising balance between cluster separation and within-cluster variation as their Silhouette scores ranged between 

0.32 and 0.47. Further investigation is needed to confirm the robustness of combining all features.  

This research lays the groundwork for developing automated BSD classification systems to aid farmers in early 

disease detection and improved crop management. Automated classification using machine learning algorithms can 

significantly reduce the time and effort required for disease monitoring. Additionally, the integration of multiple 

image features could enhance the accuracy and reliability of the classification system. Future work will focus on 

validating these findings with larger datasets and exploring advanced machine learning techniques to further improve 

classification performance. Ultimately, the implementation of such systems could lead to better-informed decision-

making in banana cultivation, reducing the impact of BSD on global banana production. 
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_______________________________________________________________________________________________ 

1. INTRODUCTION  

Bananas are a critical component of global food security, particularly in Asia, Latin America, and Africa, where they 

are widely produced and consumed [1]. Figure 1 illustrates the average production of bananas as of 2017, highlighting 

that India and China dominate production primarily for domestic consumption. In Africa, especially in countries like 

Tanzania, bananas are a dietary staple and a vital source of income for millions[2]. However, the global banana 

industry faces a significant threat from Black Sigatoka, a fungal disease caused by Mycosphaerella fijiensis, which 

affects over 50 million hectares of banana crops, leading to an estimated 3% annual reduction in production and $1.6 

billion in losses [3, 4]. 

 

Effective management of Black Sigatoka requires early and accurate diagnosis to minimize losses[5].  Traditional 

visual inspection methods are prone to subjectivity and scalability issues, whereas automated, data-driven solutions 

offer promising alternatives[4, 6]. Automated solutions rely heavily on large datasets, which can be labelled or 

unlabelled, corresponding to supervised and unsupervised machine learning techniques, respectively. For 
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classification tasks, supervised machine learning is generally preferred due to the availability of labelled data that 

facilitates model training [7]. Therefore, labelled data is essential for effective classification. 

 

Numerous studies have focused on detecting Black Sigatoka in banana leaves [8-11], employing various 

methodologies to improve detection models. However, none of these studies have considered the stages of Black 

Sigatoka disease, a crucial aspect for early detection and effective management. Understanding disease stages is vital 

for timely intervention. 

 

Currently, no public datasets categorize Black Sigatoka-infected banana leaves by disease stages. For instance, an 

existing dataset by [12] includes images of infected leaves but does not group them by disease stages. This paper 

addresses this gap by presenting comparative experiments using K-Means clustering algorithms with different feature 

extraction techniques to derive Black Sigatoka disease stages as class labels from an existing image dataset. The goal 

is to establish a robust and objective disease stages dataset to develop accurate multiclass classification models, 

thereby enhancing early detection and intervention strategies. 

  

 
Figure 1: Top banana producers World Wide (2010-2017) 

 

2. MATERIALS AND METHODS 

The study area for this research was mainly from the regions of Kagera, Arusha, Dar es Salaam, Kilimanjaro and 

Mbeya where the main banana images for the dataset were obtained. Some other datasets were obtained from other 

parts of the world to complete the main dataset. This study is an experimental one where different experiments were 

carried out to obtain the required output.  

2.1 Dataset description 

2.1.1 Leveraging existing resources  

This study utilised publicly available datasets containing banana leaf images with disease infestations, including Black 

Sigatoka. This strategic approach allowed us to reuse existing datasets from comparable locations. 

2.1.2 Dataset selection 

Three datasets were carefully chosen based on their relevance to our research goals. These datasets are described 

below: 

Dataset of Banana Leave and Stem Images for Object Detection, Classification and Segmentation: A Case of 

Tanzania [12]: This dataset, characterized in Table 1, offers diverse banana leaf and stem images, including examples 

infected with Black Sigatoka. 

 

 



International Journal of Advances in Scientific Research and Engineering (ijasre), Vol 10 (11),  Nov - 2024  

https://ijasre.net/             Page 18 

DOI: 10.31695/IJASRE.2024.11.2 

Table 1: Facts about Dataset by [12] 

Fact Description 

Dataset name 

Dataset of banana leaf and stem images for object detection, classification and segmentation: 

A case of Tanzania 

Location Tanzania 

Data type Images 

Content 

Healthy Banana Leaves (5628), Black Sigatoka (5767) and Fusarium Wilt Race 1 (4697) 

infected banana leaves and stems 

Collection method Smartphones 

Purpose Develop machine learning models for early detection of banana diseases 

Accessibility Mendeley Data, https://doi.org/10.1016/j.dib.2023.109322 

 

 

BananaLSD: A banana leaf images dataset for the classification of banana leaf diseases using machine learning 

by  [13]. Table 2 provides annotated leaf images with various diseases, including Black Sigatoka and other diseases 

that affects the banana plant.  

 

Table 2: BananaLSD description 

Fact Description 

Dataset name BananaLSD 

Location Gazipur, Bangladesh 

Data type Images 

Content Images of healthy and Pestalotiopsis (400), Sigatoka (400), Cordana (400) diseased banana 

leaves 

Collection method Smartphones 

Purpose Classification of banana leaf diseases 

Accessibility  Mendeley Data, https://doi.org/10.1016/j.dib.2023.109608 

 

PSFD-Musa: A dataset of banana plants, stem, fruit, leaf, and disease by [14]. Table 3 provides comprehensive 

metadata. PSFD-Musa offers data on various banana diseases, including Black Sigatoka. Notably, the authors 

addressed data imbalance through image augmentation. 

Table 3: PSFD-Musa dataset description 

Fact Description 

Dataset name PSFD-Musa: A dataset of banana plant, stem, fruit, leaf, and disease 

Location BORTARI VILLAGE, Chaygaon, Kukurmara, District – Kamrup (Rural), Assam, India.  

HAJO VILLAGE, District – Kamrup (Rural), Assam, India. 

Data type Images 

Content An image dataset of varieties of banana plants and the diseases related to them: 

Bacterial Soft Rot (1078), Banana Fruit Scarring Beetle (150), Black Sigatoka (474), Yellow 

Sigatoka (264), Panama disease (102), Banana Aphids (366), and Pseudo-Stem Weevil 

(2736). 

Collection method Smartphones 

Purpose Machine learning related tasks 

Accessibility  Mendeley Data, https://doi.org/10.1016/j.dib.2022.108427 

 

Our study targeted images of banana leaves exhibiting solely Black Sigatoka disease across these diverse datasets. The 

process of combining images from multiple sources ensured data variety for model training. Initial visual inspection 
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revealed that no single dataset provided sufficient images of Black Sigatoka stages due to differing initial data 

collection purposes and a potential lack of focus on stage classification. Therefore, incorporating images from various 

sources significantly increased the likelihood of capturing the complete spectrum of Black Sigatoka stages. 

 

2.2 Data preprocessing 

The study performed data preprocessing which is said to be a crucial step in the data analysis and machine learning 

pipeline that involves cleaning and transforming raw data into a format suitable for analysis or model training. The 

following is the description of the activities that were carried out in preprocessing the data.  

2.2.1 Renaming the images 

The images selected were all renamed to have one common structure. The structure of the name was a combination of 

a string and a number. For example, image_1, image_2, and image_3 with a sequential increase of numbers from 1 to 

n where n is the total number of all images of BSD-infected leaves. This process created uniformity and made it easier 

to manage the images and avoid unnecessary duplication.  

2.2.2 Image resizing 

Image resizing offers several advantages for deep learning applications, including computational efficiency, reduced 

memory usage, and consistent input size requirements. Convolutional neural networks (CNNs), for instance, 

necessitate consistent image dimensions across layers [15]. The optimal image size for a given task depends on the 

specific application. Studies have demonstrated improved performance with image sizes of 80x80, 120x120 or 

224x224 for deep-learning tasks [16]. While larger images retain more information, they come at the expense of 

computational performance. In this study, all images were resized to 512x512 pixels to balance information retention 

and performance demands.  

2.2.3 Data augmentation 

To address the data imbalance found within the dataset, geometric transformations such as flipping, rotating, zooming, 

shifting, and shearing were applied via data augmentation techniques. The ImageDataGenerator class in Keras 

facilitated this augmentation, a well-established approach for enhancing image classification tasks, as demonstrated in 

prior research[17-19].   

2.3 Experimental setup 

2.3.1 BSD stages 

The study aimed to classify Black Sigatoka (BSD) infection stages in banana leaves using unlabelled images. The 

study adopted a four-stage categorization system based on the work of [20] aligning with the specific needs of the 

research. This system groups the six stages described by Pérez-Vicente [21] and Fouré, Grisoni [22] into four broader 

categories: 

 Healthy: No visible signs of BSD infection. 

 Early: Encompasses stages I and II, characterized by faint reddish-brown specks and streaks. 

 Medium: Combines stages III and IV, presenting larger, coalescing dark brown streaks and spots. 

 Advanced: Represents stages V and VI, characterized by necrotic areas, yellow halos, and ascospore 

production. 

Figure 2 provides visual examples of BSD progression across these stages, while Figure 3 depicts the updated 

categorization scheme. While the six-stage system offers finer detail, the four-stage approach aligns better to group 

unlabelled images into broader categories suitable for our chosen clustering algorithms. 
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Figure 2: BSD at different stages[21] 

 

 
Figure 3: A four-stage approach for categorizing BSD 

 

2.3.2 Rationale for four-stage system: 

The decision to utilize the four-stage system stems from several key considerations: One is data Separability: As 

observed in Figure 3, particularly in sections C and D, differentiating early stages (I and II) can be challenging due to 

subtle visual differences. Grouping these stages into "Early" simplifies classification while capturing the essential 

distinction from healthy leaves. Two, clustering Algorithm Compatibility; many clustering algorithms struggle with 

large numbers of categories. The four-stage system reduces the number of classes, improving the suitability of chosen 

algorithms for our task. Lastly, it is because our primary goal is to develop a framework for grouping unlabelled 

images into meaningful categories. The four-stage system provides a practical balance between detailed information 

and feasibility for our chosen approach. 
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2.3.3 Choice of clustering algorithm 

The K-means clustering presents a valuable option for the task at hand due to its specific strengths and the nature of 

the data being analysed. The choice of K-means clustering algorithm for categorizing banana leaf images based on 

Black Sigatoka infection stages is well-suited due to several factors. The visual progression of the disease aligns with 

the core principle of K-means cluster formation, where data points are grouped based on their similarity. The 

algorithm will leverage features like the area of infection, colour histograms, and descriptive statistics to quantify the 

visual cues associated with each stage. The area of infection directly measures the extent of disease spread; colour 

histograms capture the chromatic shifts from healthy tissue to necrotic lesions; and statistics offer a numerical 

description of the distribution and nature of the diseased areas. By combining these features, K-means has the 

potential to effectively differentiate between the early, middle, and advanced stages of Black Sigatoka, facilitating the 

categorization of the image dataset. 

2.3.4 Cluster evaluation metrics 

To assess the quality and efficacy of the clustering results, the following evaluation metrics were used. Silhouette 

Score which measures how well data points are placed within their assigned clusters compared to how close they lie to 

points in neighbouring clusters. A higher Silhouette score indicates better-defined clusters[23]. Davies-Bouldin Index 

which calculates the average similarity between each cluster and its most similar cluster. A lower Davies-Bouldin 

index signifies better separation between clusters[24]. Calinski-Harabasz Index which evaluates cluster quality based 

on the ratio between inter-cluster dispersion (how spread-out clusters are from each other) and intra-cluster dispersion 

(how tightly packed points are within a cluster). A higher Calinski-Harabasz index implies better-defined clusters[25]. 

2.3.5 Experiment one: assessing infected leaf area as a feature for black sigatoka stage classification 

This initial experiment investigated the suitability of the infected area as a feature for classifying Black Sigatoka 

(BSD) stages. Python programming language was employed for image processing and analysis. The OpenCV library 

provided functionalities for image manipulation, while Scikit-learn offered the K-means clustering algorithm and 

evaluation metrics. 

Images were resized to 500x500 pixels for consistency. Conversion to grayscale was achieved using the 

cv2.COLOR_BGR2GRAY function, followed by thresholding via Otsu's method, is a widely recognized technique for 

automatic image segmentation based on intensity values[26]. This process effectively transformed the images into a 

binary format. The countNonZero function from OpenCV facilitated the calculation of the infected area ratio, which 

was subsequently considered as the feature representing the infected region. 

The extracted area features for all images in the dataset were stored in a list, and this list served as input for the K-

means clustering algorithm obtained from Scikit-learn. The elbow method was employed to determine the optimal 

number of clusters ('k'). The results depicted in Figure 4 guided the selection of k = 3 for the subsequent clustering 

process. 

2.3.6 Experiment two: utilizing colour histograms for black sigatoka stage clustering 

The second experiment explored the efficacy of colour histograms as features for classifying BSD stages. The study 

employed the calcHist function from the OpenCV library where colour histograms were computed for each image. 

These histograms were subsequently flattened using the flatten() function and normalized to ensure consistent feature 

representation. This process was repeated for all images in the dataset, and the extracted features were aggregated into 

a list for subsequent use with the K-means clustering algorithm. The chosen evaluation metrics were then computed, 

and the obtained results were stored for further analysis. 

2.3.7 Experiment three: leveraging statistical features for Black Sigatoka stage classification  

The third experiment investigated the potential of statistical features extracted from infected leaf regions for 

classifying BSD stages using K-means clustering. A Python function carried the following operation in achieving the 

task at hand. Colour Channel Splitting: The function begins by separating the input image into its individual blue (b), 

green (g), and red (r) channels using OpenCV's cv2.split function. Moment Calculation: For each channel, the function 

calculated various statistical moments, including: 

 Mean: Represents the average intensity value within the channel. 

 Standard Deviation: Captures the variability of intensity values around the mean. 

 Skewness: Measures the asymmetry of the distribution of intensity values. 

 Kurtosis: Characterizes the "peakedness" of the distribution compared to a normal distribution. 
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 Feature Vector Construction: The calculated features (means, standard deviations, skewness, and kurtosis) for 

all three channels are then combined into a single feature vector using np.array. This vector encapsulated 

various statistical properties of the infected region's colour distribution. 

 

By applying this function to each image in the dataset, a collection of feature vectors was obtained. These vectors 

served as input to the K-means clustering algorithm, allowing it to group images based on the similarities and 

differences captured by the statistical features. 

2.3.8 Experiment four: exploring texture features for Black Sigatoka stage classification 

The fourth experiment delved into the realm of texture features, specifically investigating whether Local Binary 

Patterns (LBP) could aid in K-means clustering for BSD stage classification. This approach explored the possibility of 

leveraging spatial relationships between pixel intensities within the infected regions. 

 

The experiment commenced with the familiar pre-processing steps: Image Loading and Resizing: Images were loaded 

and resized to ensure consistency in the analysis. Grayscale Conversion: Utilizing OpenCV's Otsu method, the images 

were converted to grayscale for effective LBP computation. Then the Local Binary Pattern (LBP) calculations were 

carried out through a defined function. The function utilized the local_binary_pattern function imported from 

“skimage.feature” library to calculate LBP features. LBP compares a central pixel's intensity with its surrounding 

neighbours and encodes the results as a binary pattern, capturing local textural variations. The function then 

constructed an LBP histogram using the np.histogram function. This histogram represented the frequency of different 

LBP patterns encountered in the image, providing a statistical summary of the image's texture. 

Importantly, the histogram is normalized to ensure consistency and prevent bias towards features with higher 

frequencies. By applying this function to each pre-processed image, a collection of LBP histograms was obtained. 

These histograms served as texture-based features for the K-means clustering algorithm. 

2.3.9 Experiment five: combining features for enhanced Black Sigatoka stage classification 

Building upon the individual feature explorations conducted in the previous experiments, the fifth experiment 

investigated the potential benefits of combining various features for improved K-means clustering performance in 

classifying BSD stages. This approach capitalizes on the unique strengths of different features to overcome potential 

limitations and achieve more robust clustering results. 

The following combinations were evaluated:  

 Area and Colour Histogram: This combined the infected area size, capturing the extent of disease spread, with 

the colour distribution information from the colour histogram. 

 Area and Statistical Features: This merged the area information with various statistical properties (mean, 

standard deviation, skewness, kurtosis) extracted from the infected regions, potentially providing a more 

comprehensive understanding of the infected area's characteristics. 

 Area, Colour Histogram, and Texture Features: This combined all previously explored features, encompassing 

the area size, colour distribution, and spatial texture patterns represented by LBP histograms. 

 All Features (Area, Colour Histogram, Texture, and Statistical Features): This experiment utilized the full 

spectrum of features extracted in the preceding experiments, providing the most comprehensive feature set for 

clustering. 

 

The rationale behind combining features lies in the principle of complementarity. Each feature captures a specific 

aspect of the infected leaf region. By combining features, the clustering process can leverage the strengths of each 

feature to compensate for potential shortcomings in others, leading to a more refined and informative representation 

for clustering. This experiment aimed to determine if the combined feature sets can significantly improve the quality 

and accuracy of Black Sigatoka stage classification using K-means clustering.  
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3. RESULT AND DISCUSSION 

3.1 Results of experiments one to five 

Figure 4 shows the result of the elbow method used to obtain the best k values to be used with the K-Means algorithm. 

From the figure, k was set to 3, representing the three stages of the disease besides the health leaves that form the 

fourth stage. 

 
Figure 4: Results of the elbow method for optimal k value. 

 

Table 4 shows the results of experiments one to five which involved the area feature, colour histogram feature, 

statistic feature, texture feature and a combination of different features.  

Table 4: K-Means Clustering Results with Different Features 

Feature Type Cluster Assessment Criteria Score 

Area Silhouette Score 0.5374 

 Davies-Bouldin Index 0.5604 

 Calinski-Harabasz Index 13112.89 

Colour Histogram Silhouette Score 0.1367 

 Davies-Bouldin Index 2.3942 

 Calinski-Harabasz Index 648.86 

Statistics Silhouette Score 0.3299 

 Davies-Bouldin Index 1.0168 

 Calinski-Harabasz Index 5136.79 

Texture Silhouette Score 0.4719 

 Davies-Bouldin Index 0.6746 

 Calinski-Harabasz Index 9741.91 

Area + Colour Histogram Silhouette Score: 0.1058 

Davies-Bouldin Index: 2.2318 

Calinski-Harabasz Index: 917.45 

Area + Statistics Silhouette Score: 0.3299 
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Davies-Bouldin Index: 1.0169 

Calinski-Harabasz Index: 5136.70 

Area + Histogram + Texture Silhouette Score: 0.1048 

Davies-Bouldin Index: 2.2464 

Calinski-Harabasz Index: 904.22 

Area + Colour Histogram + 

Texture + Statistics 

Silhouette Score: 0.3295 

Davies-Bouldin Index: 1.0186 

Calinski-Harabasz Index: 5136.53 

 

 

3.2 Discussion of the results  

In Table 4, the study evaluated the performance of different feature sets in clustering using three important metrics: 

Silhouette Score, Davies-Bouldin Index, and Calinski-Harabasz Index. These results offer valuable insights into how 

effectively each feature separates clusters. 

 

Starting with the Silhouette Score, the “area” feature stood out with the highest score of 0.5374, indicating that it 

achieved a moderately good level of cluster separation. This suggests that using the area as a feature allows for clear 

and distinct clustering. On the other hand, the “Colour Histogram” feature had the lowest Silhouette Score of 0.1367, 

which highlights the difficulty of achieving effective clustering with this feature. Most of the other features and 

combinations, especially those including “Area” or “Texture” feature, scored between 0.32 and 0.47. This suggests a 

moderate level of separation, indicating that these features do contribute positively to clustering performance. 

 

Looking at the Davies-Bouldin Index, the study found that a combination of “Area, Colour Histogram, Statistics, and 

Texture” had the lowest score of 1.0186. This suggests a potentially better separation between clusters compared to 

other features. In the context of this index, a lower score indicates less overlap between clusters and thus better 

performance. Once again, the “Colour Histogram” feature had the highest Davies-Bouldin Index score of 2.3942, 

reinforcing its weaker performance in separating clusters effectively. A similar trend was observed here as with the 

Silhouette Score, where lower scores generally correspond to better separation. 

 

The Calinski-Harabasz Index further highlights the effectiveness of the “Area” feature, which achieved the highest 

score of 13112.89. This suggests significant cluster separation with consistent within-cluster variances, showing that 

“Area” is a robust feature for clustering. Conversely, the “Colour Histogram” feature had the lowest Calinski-

Harabasz Index score of 648.86, implying limited separation and potentially high within-cluster variations. Feature 

combinations that include “Area” generally achieved scores between 5136 and 9742, indicating decent separation but 

potentially higher within-cluster variations compared to using “Area” alone. 

 

Overall, the “Area” feature consistently showed strong performance across all metrics, making it the most effective 

feature for achieving good cluster separation. In contrast, the “Colour Histogram” feature consistently 

underperformed, revealing its limitations in clustering. However, combinations of features, particularly those 

including “Area” and “Texture”, demonstrated moderate to strong performance. This suggests that they can enhance 

clustering outcomes when used alongside the “Area” feature. Figure 5 provides a visualization of the comparisons of 

these experiments.  
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Figure 1: A comparison of the performance of different features in clustering BSD stages 

 

From these results, while it can be observed that the “Area” feature alone achieved the highest Silhouette Score, it 

might not be the most robust choice due to potential limitations in capturing the full complexity of BSD stages as 

suggested by [27]. Further analysis and inspection of the clusters will be necessary to confirm. Numerous studies have 

explored the use of feature extraction for disease detection, employing the K-means algorithm and other classification 

techniques such as SVM. For instance, Chaudhari and Patil [28] evaluated the accuracy of the SVM model. Unlike our 

research, which emphasizes the features themselves for subsequent classification tasks, their study primarily assessed 

the model's accuracy. 

  

4. CONCLUSION  

This study investigated the feasibility of utilizing K-means clustering algorithms to classify Black Sigatoka (BSD) 

disease stages in banana leaves using unlabelled images. The exploration encompassed various image features, 

including infected leaf area, colour histograms, statistical features, and texture features. 

 

The findings highlight the potential of K-means clustering for this task. However, the effectiveness of the clustering 

process hinges on the selection of appropriate features. Here, we observed that: Solely relying on area feature achieved 

a moderate level of cluster separation but might not capture the full complexity of BSD stages. Colour histograms 

alone exhibited poor performance in differentiating between disease stages. Combining features like area with texture 

or statistical features appeared to offer a promising balance between cluster separation and within-cluster variation. 

This suggests that leveraging complementary information from multiple features can enhance the clustering process. 

While the combination of all features yielded the lowest Davies-Bouldin Index, indicating potentially better 

separation, further investigation is necessary to confirm the robustness of these clusters. 

 

For a more improved results domain knowledge needs to be incorporated into feature selection and cluster evaluation 

to ensure practical relevance for disease classification tasks. There is also a need to investigate alternative clustering 

algorithms that may be better suited for specific feature combinations or complex data structures. Validating the 

derived clusters using ground truth data from human experts needs to be carried out to assess the accuracy and 

effectiveness of the proposed approach for real-world applications. By addressing these limitations and exploring new 
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avenues, this research can pave the way for developing robust and automated disease classification systems that 

empower farmers with early detection capabilities and contribute to improved crop management practices. 
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