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ABSTRACT

Greywater (GW) reuse is becoming a more well-liked method of water conservation worldwide as a result of
the depletion of water resources and the rise in water demand. All wastewater produced by a household, excluding
sewage, is referred to as GW. The makeup of GW is different, reflecting the residents' way of life and the chemicals
they use in their homes. GW flow from a household typically makes up around 65% of the total wastewater flow.
Approximately 50% of the total GW is further light greywater. As a result, GW offers a great deal of possibilities for
treatment, recycling, and reuse. The primary objective of this article is to study and review the literature analysis on
the various properties of GW and the available treatment techniques. Technologies for treating GW can be classified
as physical, chemical, biological, or as a mix of these systems. Based on the analysis the inference that, physical
methods by themselves cannot provide a sufficient removal of organics, nutrients, and surfactants. Chemical
approaches are successful in eliminating the suspended particles, surfactants, and organic compounds present in the
low strength GW. The most practical and affordable method for recycling GW is thought to involve the use of an
aerobic biological process in conjunction with physical filtering and disinfection. For collective urban housing
constructions, the membrane bioreactor (MBR) appears to be a particularly attractive solution.
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1. INTRODUCTION

Numerous uses for freshwater exist in the residential, commercial, and energy domains. The quantity and
quality of scarce, valuable freshwater resources are declining as a result of overexploitation of these resources and
rising wastewater production [1,2,3]. The pressure on natural sources including water, land (earth), and energy is
increasing due to unchecked population growth, urbanization, and industrialization worldwide. Essential to many
economic endeavors, human welfare, and the life of ecosystems, water is a necessary component [4]. Human needs are
greatly outweighed by the overall amount of freshwater on Earth. Because the majority of Earth's water resources—
roughly 97% —are found in the seas, only 3% of all water resources are directly accessible, making water a rare
resource [5]. Water is distributed unevenly in space and time, which influences how it is used in some geographic
locations and deprives others of this resource. A major deficiency of freshwater due to human activity, excessive use
of water resources that eventually depletes them, and severe droughts in many parts of the world [6]. Water stress is
estimated to affect 750 million people globally today, and by 2025, that number is expected to increase to 3 billion.
[7,8]. Many parts of the world are now obliged to consider using alternative water sources due to water shortages and
the loss of natural water supplies [9,10]. Particularly in water-stressed places like arid and semi-arid regions, on-site
greywater (GW) treatment and reuse is receiving more attention globally. GW reuse has a lot of potential as a constant
resource that can be used for non-potable purposes [11].
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The increasing awareness of the importance of using GW in local and national programs to reduce pollution,
enhance food security, lessen the impact of climate change, and increase the amount of potable water available is
leading to a growing acceptance of this practice [12]. Blackwater is wastewater from toilets, while greywater is
wastewater from bathtubs, showers, hand basins, kitchen sinks, dishwashers, and washing machines [13-16].
However, wastewater from kitchen sinks is frequently classified as blackwater [17]. The various treatment methods
are determined by the characteristics of the site and the greywater. The quality of the water, the amount that needs to
be treated, and the intended usage all influence how a greywater treatment system is designed [18]. Wastewater can be
converted into a valuable source of water by recycling a significant amount of it. While GW contributes 75-90 L/day
to the generation of household wastewater in low-income nations, in high-income and European Union nations, it can
make up as much as 75% of wastewater production [19]. Treatment is necessary for the most polluting part of
residential wastewater. GW source separation can reduce the amount supplied to wastewater treatment facilities
[3,20,21]. Plant and human life are much at risk from untreated greywater. Greywater's properties and intended use are
the primary determinants of how it should be treated. Although several research works have concentrated on the
literature concerning greywater treatment alternatives [22—24]. Additionally, this study provides a brief overview of
the benefits and drawbacks of the most popular biological and physicochemical technologies for treating GW.

2. SOURCES OF GREYWATER AND THEIR COMPOSITION

The features of greywater are contingent upon various factors such as the population size, age distribution, life
patterns and water consumption, living standards, social and cultural customs, types and amounts of household
chemicals (e.g., soaps, toothpastes, shampoos, detergents, etc.) utilized, and the amount of time that greywater is held
before being utilized [9,25,26].

The complexity of greywater is demonstrated by the presence of multiple pollutants [27]. High amounts of chemicals
found in paints, oils, solvents, bleaches, and non-biodegradable fabric used in clothes and soap powders (such as salt,
phosphorus, nitrogen, and surfactants) are found in laundry greywater [28,29], but other substances include biological
microorganisms like salmonella and faecal coliforms, as well as general hydro-chemical components and xenobiotic
organic chemicals (XOCs) [30]. The main sources of GW are kitchens, laundry rooms, bathrooms, and wash basins.
Based on the source's pollutant content, greywater (GW) is typically separated into two categories in the literature:
light GW (LGW) and dark GW (DGW) [17,31]. Compared to dark greywater, light greywater is less contaminated.
Total GW is sometimes referred to as mixed greywater (MGW), which includes greywater all of light and dark
greywater resources [32]. Figure 1 lists a few sources of greywater as well as some of its components.
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Fig. 1: Greywater sources and their constituents [19,28,29]
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2.1 Qualitative features of Greywater

Many factors affect the characteristics of greywater quality, such as the plumbing system, GW source
(domestic or commercial) in the plumbing system, the plumbing system, the location, the water source, the residents'
routines and way of life, and many others [33,34]. Furthermore, a number of other factors impact the quality of GW,
including cleaning product usage, laundry procedures, bathing routines, and patterns for washing dishes and disposing
of home chemicals [35]. Greywater from the bathroom or hand basin often includes less particulates, organic carbon,
and germs than that from the kitchen and laundry [36].

Most of the time, fresh GW cannot be analyzed right away after discharge, and the amount of time that GW is stored
until analysis affects its quality. Storage has a significant impact on GW quality for solids and a modest impact on
organics [37]. Therefore, depending on the home wastewater volume [38,39], greywater can account for 50% to 80%
or even over 90% of the total volume if vacuum toilets are fitted [40]. Although the average amount of greywater is
between 90 and 120 1/p/d, in low-income nations with ongoing water scarcity, As little as 20 to 30 I/p/d of GW may be
present [29]. Additionally, there are differences in the amount of greywater between urban and rural areas. Figure 2,
shows the various sources of greywater [19,41,42].
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Fig. 2: Greywater distribution at various sources [19,41,42].

Knowing the physical, chemical, and biological properties of greywater and how they vary is essential when choosing
a greywater treatment system. Table 1 lists the greywater's chemical, biological, and physical components.

Table 1: Greywater's chemical, biological, and physical components

No.  Constituent Types Parameters Range References

1 Physical constituents Temperature 17-35°C [43]
Turbidity 20 - 440 NTU [44]
Electrical conductivity 15— 3000 puS/cm [45]
Suspended solids 200-530 mg/| [46,47]

2 Chemical constituents pH 75-82 [48]
Nitrates 0.65 mg/I [49]
BOD 100 — 180 mg/I [46]
COD 250 — 370 mg/| [50]
Phosphates 0.01 mg/l [51]
Chlorides 50 mg/l [43]
Oil and grease 10 mg/l [52]
Magnesium 0.1 mg/l [53]
Calcium 30 —50 mg/l [54]
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3 Biological Constituents Total coliforms (counts/100 ml) 1x103 — 8x108 [32,33]
E. coli Up to 6x106 [17,46,55]
Fecal coliforms Up to 1x106 [56,57]
Pseudomonas aeruginosa 1x104 [58,59]
Staphylococcus aureus 1x102 — 1.5x103 [58,60,61]
Salmonella typhi 5%103 [62]
Salmonella spp. 3x103 [46]

3. GREY WATER TREATMENT SYSTEMS

For storage and use, raw greywater treatment is required. Greywater should be treated to a higher degree
before reuse since it presents health risks to people and their environment if left untreated [63,64]. Reuse standards
must be met, as well as health, cosmetic, and technical issues (caused by organic debris, particulates, and pathogens)
must be resolved [65]. Various technologies with varying levels of complexity and effectiveness have been the subject
of numerous studies on greywater treatment [64]. Physical, chemical, biological, or a combination of these systems are
the several types of GW treatment technologies according to the treatment principle they employ [48,64,65].
Screening, grit removal, sedimentation, sludge thickening, ion exchange, multimodal filtration, adsorption, reverse
osmosis, and ultrafiltration are examples of physical and chemical techniques. The two basic categories of biological
techniques are aerobic and anaerobic. The two categories of aerobic technologies are attached growth (such as
misleading filters, rotating biodiscs, created wetlands, etc.) and suspended growth (such as activated sludge processes,
aerated lagoons, waste stabilization ponds, etc.). Anaerobic treatments comprise sludge digesters, contact beds, up-
flow anaerobic sludge blanket reactors and anaerobic ponds [66]. Pre-treatment, primary treatment, and post-treatment
are the three separate therapy steps that precede most of these technologies, as shown in Figure 3. Septic tanks, filter
bags, screens, and filters are examples of pre-treatment methods used to reduce the quantity of debris, oil and grease to
avoid clogging the treatment in the future (Li et al., 2009). On the other hand, the post-treatment disinfection phase is
utilized to satisfy the microbiological requirements.
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Fig. 3: Potential procedures and pathways for the recycling and treatment of GW [65]

3.1 Physicochemical Treatment

Physicochemical technology clears significantly more water and removes organic impurities from greywater
[53]. Dust, gritty sand, and membrane separation are examples of common physical therapies. Three methods are used
in a typical physical procedure to clean water: (i) Particle screening by physical means; (ii)) Chemical sorption of
pollutants onto the soil surface; and (iii) Absorption, occurring when aerobic microorganisms consume wastewater and
take up its nutrients. The most widely used physical and chemical treatment options for GW treatment systems are
disinfection units coupled with sand filters [67]. The distribution of contaminants with different sizes in greywater and
the porosity of the filters affect the filtration methods' efficacy; in general, higher effluent quality corresponds with
lower porosity of the filters. As a result, the amount of contaminants that coarse filters can remove from greywater is
restricted [19,48,64,65].
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According to Chaillou et al. (2011), sand filters efficiently eliminate TSS, TDS, and turbidity from greywater [68].
More than 76% of the turbidity, TDS, and TSS were removed in the investigations by Friedler & Alfiya, and
Samayamanthula et al. [69,70]. Sand's hydrophobic properties, which draw TSS in large quantities, are mostly to
blame for this. Additionally, through ion exchange and adsorption processes, finer sand particles draw in negatively
charged colloidal particles [67)]. One of the main causes of organic matter removal in sand filters is the development
of a schmutzdecke layer. The quantity of organic matter reduced in sand filtration treatment units is insufficient,
nevertheless, as it only forms on the top surface of the sand filters [71]. Sand filters can work more efficiently by
employing pre-treatment methods like coagulation and sedimentation [72]. According to March et al. (2004), the low
strength bath GW treatment system used a nylon sock-style filter, followed by a sedimentation and disinfection stage
[73]. COD, turbidity, SS, and TN were 170 mg/l, 20 NTU, 45 mg/l, and 11.5 mg/l in the influent and 76 mg/1, 16.4
NTU, 18.5 mg/l, and 7.2 mg/I in the effluent, respectively. GW is treated using ultra-filtration (UF) and nanofiltration
(NF) in the Ramon et al. (2004) study without any prior treatment [ 74]. The UF wastewater exhibited a removal rate of
45-75% for COD and above 90% for turbidity, with very little BOD5 removal. NF showed more than 90%
elimination of organic materials in the same research [74)]. But phosphorus and dissolved nitrogen can flow through
microfiltration and UF pores with ease [75]. In all of the filtering systems, very little nutrient removal occurs,
including nitrogen and phosphorus. When coagulants like calcium hydroxide (CaOH,) and ferric chloride (FeCl;) are
added to greywater, the result is a significant pH shift during the coagulation process and an excellent removal of
COD and BODs. This is mostly because the coagulants react with the nitrates in the greywater [76]. The use of
physical processes as the only means of treatment for greywater is inadequate, unless the organic strength is very low,
as this approach does not ensure a considerable reduction of organics, nutrients, and surfactants [19,64,65].

3.2 Biological Treatment

One important factor in the biological breakdown of pollutants in greywater is oxygen. Through the aeration
process, oxygen is disparaged to promote the growth of bacteria in the aerobic biological process [47]. Usually, the
size of the particles, the quantity of gas, and the viscosity of the solution control how much oxygen diffuses during
aeration [77]. Greywater treatment has made use of a number of biological treatment methods, such as Sequencing
Batch Reactors, Membrane Bioreactors, Rotating Biological Contactors and the Up flow Anaerobic Sludge Blanket.
Boyjoo et al. (2013) state that biological systems normally go through a pre-treatment stage of coarse filtration before
being exposed to a stage of sedimentation or filtration to remove biosolids or sludge. This is followed by a post-
treatment step of disinfection using UV or chlorination to eliminate bacteria [48].

A unique type of activated sludge process (ASP) known as a sequencing batch reactor (SBR) allows for full
treatment to occur inside the reactor tank, negating the need for separate clarifiers. With this procedure, wastewater is
treated in batches, with each batch going through a different step of the treatment process. In a single tank, SBR
achieves equalization, biological treatment, and secondary clarity using a time-controlled procedure. It is one of the
technologies used in tiny communities to remove traditional boundaries. It provides excellent operational flexibility
for efficient nutrient removal. Fill, respond, settle, draw, and idle are the five fundamental processes that make up the
SBR operation [78]. Shower greywater treated by SBR (Lamine et al., 2007) meets NH,—N, BOD, and COD criteria
for wastewater reuse; COD removal ranged similarly, with BOD removal ranging from 80 to 98%. This degree of
efficiency was attained using the Hydraulic Retention Time (HRT) in 36 hours, which is extremely high but
regrettably unfeasible for practical use [79]. It was not examined how well SBR systems performed for reuse criteria
including as turbidity, TC, TSS, FC, and E. Coli [19]. Scheumann & Kraume (2009) conducted a study that was
comparable to this one, using a pilot scale SBR with different retention times. The study found that the removal of
COD, NH4-N, and TN was adequate to fulfill discharge reuse requirements [80]; however, Lamine et al. (2007) also
mentioned that this study's nitrification occurred [79]. Hermawan et al. (2019), came to the conclusion that SBR could
effectively remove five chemical compounds known as paraben biocides and lower BOD to less than 5 mg/L. The
bacterial community was using paraben as a source of carbon for reproduction, according to their research, which
explained why the selected biocides' eradication efficiency ranged from 87 to 99%. A similar procedure was used to
treat high-strength greywater in an SBR with a 15-day sludge retention period and an 11.7-hour retention period.
Concentrations of COD (132 mg/L), TP (6.8 mg/L), TN (34.5 mg/L), and ammonia (0.42 mg/L) were found in the
treated effluent, that were significantly lower than the influent's concentrations of TN (53.6 mg/L), COD (830 mg/L),
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TP (7.7 mg/L), and ammonia (1.2 mg/L) [81]. One of the most popular biological treatment methods, the SBR reduces
COD in greywater by 90% [80,82]. The relatively large percentage of colloidal COD in greywater, which is easily
removed by aerobic processes, is the primary cause of the high removal in the aforementioned investigations [83].

A membrane bioreactor (MBR) combines an ultrafiltration (UF) or microfiltration (MF) device with biological
treatment (aeration alone). To separate the particulates from the liquid, a membrane is utilized rather than a clarifier.
After biological treatment, the membrane stage offers a beneficial method of liquid solid separation by preventing
biological solids from being lost in the wastewater and permitting the reactor to hold a larger concentration of biomass
[66]. Since post-filtration and disinfection procedures are not necessary, this is the only approach that can achieve
sufficient removal efficiency of organic compounds, surfactants, and microbiological contaminations, the MBR is
acknowledged as a cutting-edge GW treatment technique. MBR systems were able to achieve a variety of effective
removal rates, including turbidity (98-99.9%), TSS (almost 100%), BOD (92-98%), COD (88-99%), total N (50—
65%), PO+P (15-45%), total P (20%), and FC (99.9%) [19]. The MBR effluent's characteristics met a number of
reuse requirements [48,84]. MBR appears to be a promising technological solution for GW recycling, particularly in
shared urban residential complexes, as it produces little surplus sludge, a compact structure, excellent and stable
effluent quality, and a high organic loading rate [85]. When a building is larger than 37 stories, On-site MBR-based
GW treatment techniques can be practically and financially feasible, according to Friedler & Hadari's (2006) research
[17]. For the purpose of treating bath grey water with low strength, A Mitsubishi Rayon (polyethylene, 0.4 um pore
size) submerged MBR was described by Liu et al. (2005). According to the study's findings, the effluent's BODs, NH,-
N concentration, and COD levels were all reduced. Ionic surfactants (AS) were found in the influent at concentrations
between 3.6 and 9 mg/l and in the effluent at concentrations below 0.5 mg/l. The effluent had no color, no odor, and no
SS content. The amount of fecal coliform was below the threshold for determination. In order to provide steady and
superior effluent water quality, this study showed that the majority of the pollutants were eliminated by biological
degradation, with the remaining pollutants being further removed by membrane separation [86]. After operating for 50
days, According to Smith & Bani-Melhem, at constant transmembrane pressure, the MBR-based GW treatment system
removed about 92% of TSS and 85% of BODs [87]. Biological processes are superior to physicochemical and
sophisticated oxidation methods for the removal of nutrients from greywater. In the trials carried out by Lamine et al.,
phosphate was also decreased by 66%, and over the 2.5 day aerobic treatment procedure, GW was cleaned of 51%
nitrite and nearly 92% of ammoniacal nitrogen. However, the absence of denitrification in the aerobic zone restricts
the amount of nutrients that can be fully removed from the GW [80]. The aforementioned data suggests that
membrane-based treatments shown excellent efficacy in the reclamation of greywater. The sustainability of membrane
technology was improved by developments in membrane-based systems. But the membrane-based system's main
drawbacks are its expense and upkeep. Future research in membrane systems will focus on a combination of less
advanced technology and methods found in nature. This could strengthen the already-established technique and help it
overcome the problems associated with GW reclamation [27].

Fixed bed reactors equipped with revolving disks positioned on a horizontal shaft are known as rotating
biological contactors (RBC). As wastewater passes through them, they rotate and get partially immersed. The
treatment's microorganisms are periodically exposed to the atmosphere in order to aid in the aeration, assimilation, and
breakdown of dissolved organic contaminants and nutrients [19,46]. Using the RBC stage, the BOD can be reduced to
below 5 mg/l, as the Eriksson et al. (2007) study shows. Additionally looked at the pilot GW treatment system removal
efficiency of five particular trace organic component types. According to their research, the treatment plant is capable
of efficiently eliminating the five paraben biocides—methyl, ethyl, propyl, butyl, and iso-butyl esters of parahydroxy
benzoic acid—which indicates that microorganisms have evolved to use parabens as a carbon source for growth. The
biocides that were chosen exhibited removal efficiencies ranging from 87% to 99%, surpassing the COD, BOD, and
TOC removal efficiency of the composite parameters [88]. Gilboa & Friedler (2008) looked into the efficacy of
sedimentation followed by RBC in removing Pseudomonas aeruginosa sp., Staphylococcus Aureus sp., Clostridium
perfringens sp. and faecal coliforms (FC) from greywater. According to the study's findings, up to 99% of the
microorganisms present in the greywater were eliminated by the system. In terms of pH, BODS, COD, microbial load
reduction, and producing effluents that adhere to discharge regulations, RBC systems function well [89]. The
effectiveness of a single-stage RBC on greywater in Pakistan was investigated by Pathan et al. (2011). Plastic sheets
and textured plastic disks were used to create the RBC [90]. Up to 40% of the time the greywater was held in the
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system, the rotating discs were submerged in it. The ability of RBC to eliminate particular pathogens (such as
Pseudomonas aeruginosa sp. and Staphylococcus aureus sp.) and indicator bacteria (such as faecal coliforms and
heterotrophic bacteria) was investigated by Friedler et al. in 2011. RBC eliminated 88.5-99.9% of all four bacterial
types, according to the study's findings [91]. According to Abdel-Kader (2013), the RBC is another aerobic method
that is commonly used to treat greywater and has shown good removal of BODS5 and TSS by 93% and 95%,
respectively. However, these aeration systems are not suitable for use in small pilot-scale treatment units due to their
high space requirements [92].

For a variety of wastewater types, the most popular and effective high-rate anaerobic system is the up-flow
anaerobic sludge blanket (UASB) reactor. The UASB reactor may be operated at a cheap cost and high focus of active
suspended biomass using straightforward methods. Additionally, the granular sludge that is developing is more
methanogenic and better able to settle than flocculent sludge, increasing the maximum loading rate of the UASB
system [93]. For many different kinds of wastewater streams, the UASB continues to be one of the most popular
wastewater treatment systems [46]. In the Elmitwalli et al. (2007) investigation, a UASB was used to treat mixed grey
water at room temperature. According to the study, ongoing operations at HRT of 20, 12, and 8 hours decreased
overall COD by 31-41%, TN by 24-36%, and TP by 10-24%, respectively [93]. Additionally, a UASB grey water
treatment system operating at 35 °C was described by Hernandez et al. (2008). Hernandez et al. (2008) found that at
HRT of 7.0 and 12.5 hours, the UASB system can remove about 55% of the COD and 25% of the anionic surfactants
[94]. A manufacturing facility's UASB Greywater treatment equipment was developed by Hernandez et al. (2011).
They found that at HRTs of 7.0 at 12.5 hours, the UASB system could remove 24% of anionic surfactants and almost
50% of chemical oxygen demand [95]. Anaerobic degradability of a single-stage UASB reactor was higher than that
of a typical septic tank even at minimal temperatures, according to research on UASB reactors for GW treatment
conducted by the Hamburg University of Technology in Germany. Moreover, Okeng et al. (2018) state that a two-
stage UASB reactor may significantly lessen its hydraulic retention [46].

4. CONCLUSION

The current investigation demonstrates that the creation and properties of greywater vary greatly. Greywater
can be effectively treated by isolating it from its source because it is less contaminated than black water. Even while
GW isn't as dirty as sewage or BW, it still needs to be treated before being used again. Actually, none of the untreated
GW features meet the requirements and rules for reuse. Based on the characteristics of grey water and the suggested
standards, recycled grey water is reused in metropolitan areas. Based on the literature review, the following inferences
can be made:

1. The COD:BODs ratios for all varieties of grey water indicate good biodegradability. Both nitrogen and
phosphorus are lacking in the grey water used for washing and bathrooms. The COD:N:P ratio of the gray water in
the kitchen is balanced. Kitchen grey water should be combined with other streams if biological treatment is the
plan for treating the water to prevent macronutrient and trace nutrient deficiencies.

2. Reducing organics, nutrients, and surfactants to a suitable level cannot be ensured by physical processes alone. As
a result, recycling grey water is not advised.

3. The low strength grey water can be effectively cleaned of suspended particles, organic compounds, and surfactants
using chemical procedures.

4. Because anaerobic processes are not very effective at removing organic contaminants and surfactants, they are not
recommended for treating GW.

5. The majority of treatment technologies used for treating GW are highly energy-intensive techniques like SBR,
MBR, etc. While less energy-intensive techniques like sand or granular activated carbon filtration are less
effective at removing pollutants, combining these systems can result in higher pollutant removal efficiencies and
better-quality effluents from GW treatment.

6. Particularly in common urban housing complexes with more than 500 residents, the MBR appears to be a
particularly alluring choice for recycling medium- and high-strength GW.
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7. Acrobic biological processes like RBC and SBR can be employed for medium- and high-strength GW treatment.
It is believed that combining an aerobic biological process with physical filtering and disinfection is the most
economical and practical way to recycle GW.
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