

DOI: 10.31695/IJASRE.2019.33404

Volume 5, Issue 7 July - 2019

Comparative Study of the Corrosion Inhibition and Adsorption of Ripe and Unripe Plantain (Musa paradisiaca) Peel Extract on Zinc in 2.0M CH₃COOH Acid Solution

Osaribie, N.A.¹, William-Ebi, D.² and Tombiri, M.Z.³

¹⁻³Department of Chemical Engineering

Faculty of Engineering, Niger Delta University

Wilberforce Island, Bayelsa State

Nigeria

ABSTRACT

The aim of this study was to investigate the corrosion inhibition and adsorption of both ripe and unripe Musa paradisiaca peel on zinc sheet in 2.0M CH₃COOH acid solution. The corrosion inhibition study was carried out using weight loss study at temperatures of 303K, 313K and 323K. Comparatively the peel extract of the ripe Musa paradisiaca showed higher inhibition efficiency to corrosion than the unripe with tannins as the main difference in the constituents which has higher concentration of tannin in the ripe and very minute in the unripe. The inhibition efficiency of the both extracts was found to decrease with rise in temperature. The experimental data complied to the Henry, Flory-Huggins and Adejo-Ekwenchi isotherms amongst which the Henry Isotherm gave the best fit having the highest regression (\mathbb{R}^2) values for both the ripe and unripe. The positive values of ΔH_{ads} and negative values ΔG_{ads} revealed the endothermic nature and spontaneity of the adsorption process respectively. Through the Kinetic-thermodynamic parameters such as $E_{a,}\Delta H_{ads,}$, ΔS_{ads} , ΔG_{ads} and the b parameter of the Adejo-Ekwenchi isotherm, the mechanism of adsorption was physiosorption.

Key Words: Zinc, Corrosion, Musa paradisiaca, Adsorption Isotherm, Ethanoic acid.

1.0 INTRODUCTION

Corrosion is the deterioration of metals in chemicals or reaction with its environment [6]. It is a ubiquitous phenomenon that deteriorates all materials, metals, plastics, glass and even concrete surfaces. Corrosion of metals can be considered as extractive metallurgy as it removes valuable metals from alloys. The study of zinc is a matter of tremendous theoretical and practical concern as it is widely used as an alloy to form important materials used in automobiles, electric components and household fixtures. Zinc as one of the most important nonferrous metals that has its extensive use in metallic coatings is amphoteric in its behavior towards acids and alkalis [7]. Zinc and zinc-coated products corrode rapidly in moist atmospheres forming white corrosion product-white rust.

Several inhibition methods for controlling corrosion attack has been reported and the use of inhibitors has proven to be effective and excellent in corrosion prevention. As a result of the toxicity, environmental restrictions and high cost of some inorganic inhibitors, the use of green inhibitors is being recently studied and a possible replacement of inorganic inhibitors. Organic compounds contain hetero atoms such as N, S, O, polar groups π electrons have been found to be very effective in inhibiting metallic corrosion when adsorbed on metallic surfaces [5]. This present study investigates the inhibiting, adsorption and thermodynamics of ripe and unripe *Musa paradisiaca* extract on zinc sheet corrosion in 2.0M CH₃COOH acid solution using weight loss measurement at 303K, 313K and 323K.

2.0 MATERIALS AND METHODS

2.1 Specimen Preparation

Rectangular pure zinc strips were used with dimension $80 \text{mm} \times 60 \text{mm} \times 0.5 \text{mm}$. The specimens were polished with emery paper, washed with deionized water, dried and weighed with an electronic balance to obtain their initial weights.

2.2 Preparation of extract

Fresh peels of ripe and unripe *Musa paradisiaca* were collected, washed, dried and pulverized into powdering form. The powdered extracts were Soxhlet extracted using ethanol and separated in a rotary evaporator at 80°C to obtain a solution free of ethanol. An aqueous aggressive solution of 2.0M Ethanoic acid was prepared. The stock solution was diluted with appropriate quantity of 2.0M Ethanoic acid to obtain inhibitor test solutions of 0.1-0.5g/l concentrations.

2.3 Weight loss test

Weight loss measurements was carried out on zinc strips at different temperatures of 303K, 313K and 323K. The dried samples were weighed and recorded before immersion into their respective solutions. The weight loss of the specimens was recorded every 5days for a period of 30 days. The corrosion rate, percentage inhibition efficiency and degree of surface coverage (θ) was calculated using the equations below:

$$C.R = \frac{87.6W}{\rho AT}$$
(1)

Where W is weight loss of zinc sheet (g), A is the total surface area of specimen in (cm^2) , t is the exposure time in hours(hr) and ρ is specimen's density (g/cm³).

$$\eta\% = \frac{CR_0 - CR}{CR_0} \times 100\%$$
(2)

where CR_0 and CR are the corrosion rates in (mm/yr) without and with different inhibitor concentrations.

$$\theta = \frac{CR_0 - CR}{CR_0} \tag{3}$$

3.0 RESULTS AND DISCUSSION

3.1. Phytochemical Analysis

Table 1: Phytochemical Composition of Ethanol extract of Musa paradisiaca peel

Phytochemical Constituents	% Composition of unripe peel	% Composition of ripe peel
Alkaloids	1.26 ± 0.051	1.37 ± 0.048
Tannins	0.001 ± 0.005	1.577 ± 0.004
Saponins	1.547 ± 0.0042	1.827 ± 0.0042
Flavonoids	1.321 ± 0.003	0.981 ± 0.0014
Glycosides	0.623 ± 0.002	0.351 ± 0.001

The results from Table 1 clearly reveals the phytochemical constituents present in the inhibitor acting as anti-corrosion agents are higher in concentrations in the ripe *Musa paradisiaca*.

<u>www.ijasre.net</u>	
DOI: 10.31695/IJASRE.2019.33404	

3.2 pH Measurement

The pH values of the 2.0M ethanoic acid, the ripe and unripe *musa paradisiaca* peel extract are shown in the table below:

Table 2. pH values of the 2.0M ethanoic acid, the ripe and unripe musa paradisiaca peel extract

Solvent	pH Value	Nature
Ethanoic Acid	2.6	Acidic
Unripe Peel Extract	6.2	Acidic
Ripe Peel Extract	6.3	Acidic

3.3. Weight loss

3.3.1 Effect of temperature on Corrosion rate

Table 3 and 4 shows calculated values of corrosion rates without and with inhibitor concentrations at different temperatures. It was observed that the corrosion rate decreases as the inhibitor concentration increases for both extracts. As the temperature increases, corrosion rate increases which is more pronounced in the unripe extract solution. This is because the ripe extract solution has a higher percentage of the phytochemical constituents thereby having a lower corrosion rate.

3.3.2 Effect of temperature on Inhibition efficiency

The results obtained from table 3 and 4 showed that increase in inhibitor concentration increases the efficiency of the both extracts. Increase in inhibitor concentration in the acidic medium resulted to adsorption of more active ions from the extracts on the surface of zinc strips and less contact of the zinc strips with the acidic environment, thereby increasing the inhibitor efficiencies. This supports the results obtained by [1]. From figure 1 and 2, it was observed that as temperature increases, the inhibition efficiencies of the ripe and unripe *Musa paradisiaca* extracts decreased, a trend often attributed to physical adsorption and vice versa for chemisorption [3]. Thus as temperature increases, the number of adsorbed molecules becomes less stable and decreases, leading to a decrease in the inhibition efficiency.

303K				313K			323K		
Conc (g/l)	CRx10 ⁻³ (mm/yr)	η%	θ	CRx10 ⁻³ (mm/yr)	η%	θ	CRx10 ⁻³ (mm/yr)	η%	Θ
Blank	0.802			1.268			1.484		
0.1	0.343	57.23	0.572	0.573	54.81	0.548	0.722	51.35	0.514
0.2	0.287	64.21	0.642	0.487	61.59	0.616	0.610	58.89	0.589
0.3	0.230	71.32	0.713	0.403	68.22	0.682	0.519	65.03	0.650
0.4	0.172	78.55	0.786	0.315	75.16	0.752	0.408	72.51	0.725
0.5	0.114	85.79	0.858	0.226	82.18	0.822	0.300	79.78	0.798

Table 2	Composion note	Inhibition of	fision or and	Surface cover	age of Unite	Musananad	iniana ot	different tom	
Table 5.	Corrosion rate,	innibition el	псіепсу апо	Surface cover	age of Unripe	musa paraa	<i>isiaca</i> ai	amerent tem	peratures

323K		
θ		
0.558		
0.601		
0.668		
0.758		
0.843		

Fig 1. Inhibition efficiency vs Inhibitor concentration for Ripe *Musa paradisiaca*

3.4 Kinetics and Thermodynamic Model

The activation energy at different concentrations of ripe and unripe *Musa paradisiaca* extracts in 2.0M ethanoic medium was calculated by plotting Log CR against $\frac{1}{T}$ which gave linear graphs with slope equal to $=\frac{-E_a}{2.303R}$ and intercept equal to LogA using The Arrhenius type equation [4].

$$Log CR = \frac{-E_a}{2.303RT} + LogA$$
(4)

Where CR is the corrosion rate. E_a is the apparent activation energy (KJ/mol), T is absolute temperature (K), R is the universal gas constant (8.314J/MolK) and A is the pre exponential factor.

The apparent activation energies for the both unripe and ripe extracts were calculated from the Arrhenius plots in Fig 3 and 4 respectively. The values of E_a as recorded in Table 5 was found to increase as the inhibitor concentration increases and higher than that of the blank indicating that the inhibitors inhibited the corrosion rate in the acidic media. Higher values of E_a in the presence of the inhibitors increases the energy barrier which decelerates the rate of corrosion on the zinc surface. The E_a values ranges from 25.19KJ/mol to 40.23KJ/mol (unripe) and 27.28KJ/mol to 60.10KJ/mol (ripe). The range of values of E_a are below the threshold value of 80KJ/mol which satisfies the trend for physisorption [9].

Table 5. Calculated values of corrosion kinetic and thermodynamic parameters for the corrosion of Zinc in 2.0M
CH ₃ COOH without and with various concentrations of unripe and ripe <i>Musa parasidiaca</i> extract.

Unripe Musa paradisiaca					Ripe Musa paradisiaca			
Conc	Ax10 ²	Ea	ΔH_{ads}	ΔS_{ads}	Ax10 ²	Ea	ΔH_{ads}	ΔS_{ads}
(g/l)	(g/cm ² hr)	(KJ/mol)	(KJ/mol)	(J/mol)	(g/cm ² hr)	(KJ/mol)	(KJ/mol)	(J/mol)
Blank	0.18	25.19	22.93	-228.28	0.36	27.28	24.62	-204.09
0.1	0.77	30.94	28.	-217.71	4.38	36.19	33.53	-203.26
0.2	0.77	31.34	28.68	-217.81	22.88	40.86	38.21	-189.52
0.3	1.65	33.84	31.17	-211.43	111.56	45.59	42.92	-176.40
0.4	2.83	35.92	33.26	-206.93	174.02	47.66	45.01	-172.68
0.5	10.45	40.23	37.57	-196.06	12316.86	60.10	57.45	-137.26

Thermodynamic parameters such as the Enthalpy (ΔH_{ads}) and Entropy (ΔS_{ads}) were calculated using the Eyring transition state equation shown below:

$$Log\left(\frac{CR}{T}\right) = Log\left(\frac{R}{Nh}\right) + \frac{\Delta S_{ads}}{2.303R} - \frac{\Delta H_{ads}}{2.303RT}$$
(5)

Where N is the Avogadro's number (6.2252×10^{23}) and h is the Planck's constant $(6.6262 \times 10^{-34} \text{Js})$

Fig 5 and 6 shows the plot of Log $\left(\frac{CR}{T}\right)$ against $\frac{1}{T}$ for both ripe and unripe *Musa paradisiaca* extract gave linear graphs with slope equal to $-\frac{\Delta H_{ads}}{2.303RT}$ and intercept equal to Log $\left(\frac{R}{Nh}\right) + \frac{\Delta S_{ads}}{2.303R}$. From Table 5, the positive values of the enthalpy of adsorption depicts the endothermic nature of the adsorption process. The large negative values of the entropy of adsorption indicates that the activated complex in the rate-determining step represents association rather than dissociation implying that disorderliness decreases ongoing from the reactants to the activated complex [8]. The results obtained is also in agreement with [2].

3.5 Adsorption Considerations

Adsorption isotherms play an important role in describing the adsorption behavior and nature of interactions of the extracts on metallic surfaces. The adsorption behavior of Ethanolic extract of both ripe and unripe *Musa paradisiaca* was studied by fitting the experimental data into Henry, Flory-Huggins and Adejo-Ekwenchi isotherms. The linearized forms for Henry, Flory-Huggins and Adejo-Ekwenchi isotherms are given by equation 6,7 and 8 respectively.

$$Log \theta = Log K_{ads} + Log C$$

$$Log(\frac{\theta}{C}) = Log K_{ads} + xLog(1 - \theta)$$

$$Log(\frac{1}{1 - \theta}) = Log K_{ads} + bLog C$$
(8)

Where x describes the number of molecules of the inhibitor adsorbed, b describes the mode of adsorption and K_{ads} represents the adsorption constant which is used to calculate the Gibbs free energy of adsorption from equation 9

$$\Delta G_{ads} = -2.303 RT Log (55.5 K_{ads}) \tag{9}$$

Isotherm	Temp	Slope	Intercept		\mathbf{R}^2	$\mathbf{K}_{\mathrm{ads}}$	ΔG_{ac}
	(K)						(KJ/m
Henry							
	303	0.2487	-0.0059		0.9643	0.9865	-10.09
	313	0.2473	-0.0249		0.9674	0.9443	-10.30
	323	0.2677	-0.0325		0.9709	0.9279	-10.59
Flory-				x			
Huggins							
	303	0.9817	0.9963	0.9817	0.8058	9.9152	-15.90
	313	1.1869	1.0349	1.1869	0.8264	10.8368	-16.66
	323	1.2316	0.9891	1.2316	0.8292	9.7521	-16.90
Adejo-				ь			
Ekwenchi							
	303	0.6335	0.9448	0.6335	0.8548	8.8064	-15.60
	313	0.5384	0.8370	0.5384	0.8689	6.8707	-15.47
	323	0.5071	0.7783	0.5071	0.8736	6.0021	-15.60

Table 6. Parameters of various Adsorption Isotherms for Adsorption of Ethanolic extract of Unripe Musa paradisiaca on zinc surface

Table 7. Parameters of various Adsorption Isotherms for Adsorption of Ethanolic extract of Ripe Musa paradisiaca on zinc

Isotherm	Temp	Slope	Intercept		\mathbf{P}^2	Keda	AGeste
Isotherin	(K)	Slope	intercept		ĸ	Nads	(KI/mol)
	(K)						(KJ/IIIOI)
Henry							
	303	0.2240	0.0216		0.9656	1.0510	-10.24
	313	0.2310	-0.0048		0.9261	0.9890	-10.42
	323	0.2512	-0.0223		0.9056	0.9499	-10.65
Flory-				x			
Huggins							
	303	0.6786	0.9679	0.6786	0.7581	9.2875	-15.74
	313	0.8967	0.9886	0.8967	0.7458	9.7409	-16.38
	323	0.9491	0.9184	0.9491	0.6929	8.2871	-16.48
Adejo-				ь			
Ekwenchi							
	303	0.8927	1.2479	0.8927	0.8015	17.6970	-17.36
	313	0.6702	0.9984	0.6702	0.813	9.9632	-16.44
	323	0.5851	0.872	0.5851	0.7846	7.4473	-16.18

surface

The regression value (R²) obtained from the Henry's plot as recorded in table 6&7 were close to unity which was higher in the unripe extract showing that the sorption data followed Henry isotherm.

The parameter x of the Flory-Huggins isotherm describes the number of active sites occupied by one inhibitor molecule [10] adsorbed and has been shown from Table 7 for Ripe Musa paradisiaca to have values less than one indicating that more than one molecules of the inhibitor occupied one active site during the inhibition process. This is unlike the case of the unripe Musa

paradisiaca extract having the x parameter to be less than one only at 303K. It shows that the Flory-Huggins model was more consistent with the ripe extract than the Unripe extract, therefore the unripe extract does not really fit into the model.

The Adejo-Ekwenchi isotherm model was used as a major determinant in describing the mode of adsorption from the calculated values of the b parameter. Decrease in the value of b with rise in temperature signifies physiosorption while increase or fairly constant value of b signifies chemisorption [10]. From Tables 6&7, the calculated values of the b parameter for the both extracts decreased with rise in temperature, clearly showing that the adsorption of ripe and unripe *Musa paradisiaca* extract onto the zinc surface was physiosorption.

The values of ΔG_{ads} calculated from the isotherm plots were all negative which showed the spontaneity of the adsorption process. Also the values of ΔG_{ads} were all found to be less than -20KJ/mol, a trend attributed to physiosorption.

4.0 CONCLUSION

Results from the present work shows that, ripe and unripe *Musa paradisiaca* extract were good corrosion inhibitors, with the ripe *Musa pardisiaca* extract giving the best inhibition efficiency over the unripe. The adsorption of the both extracts on zinc surface obeyed Henry, Flory-Huggins and Adejo-Ekwenchi Isotherms. The Henry isotherm gave the best fit having its regression values (R^2) for both extracts very close to unity compared to the Flory-Huggins and Adejo-Ekwenchi isotherms. The mechanism of physiosorption was proposed majorly from the b parameter of the Adejo-Ekwenchi isotherm, as well as from the calculated values ΔG_{ads} , ΔH_{ads} and the trend of inhibition efficiency with temperature. The positive values of the enthalpy of adsorption revealed that the inhibition is endothermic in nature accompanied by an increase in entropy.

REFERENCES

[1] A. Adesanmi (2015)." Investigation of corrosion inhibition of Guava, Banana and Almond plant extract in 0.5M of HCl and H₂SO₄ Solution on Low Carbon Steel". *M.Sc Thesis Department of Mechanical Engineering, ABU, Zaria-Nigeria.*

[2] F. E. Abeng, V. D. Idim, O. E. Obono, and T. O. Magu (2017). "Adsorption and adsorption isotherm: application to corrosion inhibition studies of mild steel in 2M HCl". *World Scientific News*, 77(2): 298-313.

[3]A. L. Nnanna, I. O. Owate, O. C. Nwadiuko, N. D. Ekekwe, and W. J. Oji (2013)." Adsorption and Corrosion Inhibition of *Gnetum Africana* Leaves Extract on Carbon Steel. *International Journal of Materials and Chemistry*, 3(1): 10-16.

[4] N. I. Kairi and J. Kassim, (2013)." The Effect of Temperature on the Corrosion Inhibition of Mild Steel in 1M HCl Solution by *Curcuma longa* Extract". *Int. J. Electrochem. Sci* 8, 7138-7155.

[5] P. M. Dass, A. I. Onen, O. N. Maitera, and G. Ushahemba (2015)." Corrosion Inhibition of zinc in acid medium by *Moringa oleifera* and *Mangifera indica* leaves extracts". *International Journal of Development and Sustainability*, 4(9): 940-950.

[6]B.E.A. Rani, and B.B.J. Basu, (2012)." Green Inhibitors for corrosion protection of metals and alloys: An Overview". *International Journal of Corrosion*, pp. 1-15.

[7] R. A. P., T. V. V., & B. M. P. (2012). Electrochemical Study of the Corrosion Behavior of Zinc Surface Treated with a New Organic Chelating Inhibitor. ISRN Metallurgy, 940107:7.

[8] S. B. Ulaeto, U. J. Ekpe, M. A. Chidiebere, and E. E. Oguzie (2012)." Corrosion Inhibition of Mild Steel in Hydrochloric Acid by Acid Extracts of *Elchhornia crassipes*". *International Journal of Materials and Chemistry*, 2(4): 158-164.

[9] S. Manimegalai and P. Manjula (2015)." Thermodynamic and Adsorption studies for corrosion inhibition of mild steel in Aqueous Media by Sargasm swartzii (Brown algae)". *J. Mater. Environ. Sci.*, 6(6): 1629-1637

[10] S. O. Adejo, M. M. Ekwenchi, J. A. Gbertyo, T. Menenge, and J. O. Ogbodo (2014)." Determination of Adsorption Isotherm model best fit for methanol leaf extract of *Securinega virosa* as corrosion inhibitor for corrosion of mild steel in HCl". Journal of advances in chemistry, 10(5): 2737-2742.