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ABSTRACT 

The finite difference equations of the successive approximation method (SAM) which substitute the differential equations of 

bending-compressed of constant stiffness are obtained. Difference equations of SAM, which approximate the limit conditions of 

the hand ends of the beam, are also obtained: simply supported hand end; rigidly fixed hand end and freehand end. On the basis 

of the obtained equations, a numerical algorithm was developed for calculating beams of constant thickness under the action of 

various static loads. According to this algorithm, a program for calculating beams on a computer was performed. The examples 

presented here show the accuracy of the results and the simplicity of the algorithm. Checks for integral equilibrium conditions of 

beams were performed to validate the newly obtained results. 

Key words: Successive Approximation Method, Bent-Compressed Beam, Constant Thickness, Numerical Algorithm, 
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_______________________________________________________________________________________ 

1. INTRODUCTION 

 The foundation beams, the columns of some buildings, the pillars of electrical transportation and the chimneys are 

generally beams of constant or variable stiffness. This type of structure is also found in aeronautical or naval constructions. 

During the process of their exploitation, these structures undergo the action not only of static charges, but also dynamic loads. The 

calculation of such structures must be accurate and easy to execute. Despite the practical importance of such elements found in a 

number of books, many of the questions related to their calculation are still relevant. Many works of researchers address the 

problem of beams [1-5]. The calculation of these structures requires the implementation of tools for modeling mechanical 

behavior increasingly sophisticated, and taking into consideration the specificities of these structures. Their calculation by the 

analytical methods remains very tedious and bulky see for example [1], [3], [6-7]. The numerical methods described in references 

[4], [5], [8-10] are more efficient. Among numerical methods, the finite element method is the most used, but it presents a number 

of difficulties such as the formation of the stiffness matrix and the tightening of the mesh around the specific zones. New 

numerical methods which are much more resonant, simple and that yield appreciable results are being developed by other 

researchers [2], [4], [11-14].. Among these methods we have the Successive Approximation Method (SAM) which is the subject 

of this article. More precisely, we will use this method to develop an algorithm for the calculation of bent-compressed beam of 

constant stiffness. The work is organized as follows. After the introduction that poses the problematic of the subject, we will 

unfold the methodology of the implementation of the Successive Approximation Method which is declined in three points. We 

will begin by describing the equations of the model problem, including the boundary conditions, and then introduce new 

dimensionless parameters into the system of equations thus obtained and into the equations describing the boundary conditions. 

We will continue by substituting for the new differential equations the finite difference equations of the Successive 

Approximation Method. This will make it possible to obtain a system of algebraic equations. Finally we will develop a calculation 

algorithm. Before concluding, we will devote the last part of the work to the validation of our approach (the Successive 

Approximation Method) through the numerical resolution of the test problems. 
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2.  EQUATION OF PROBLEM’S MODEL  

 The differential equation of a bending - compression beam of constant stiffness can be obtained as a special case of the 

differential equation of a flexural - compression plate. For this, it suffices in (2.17) [1] all the partial derivatives with respect to   

are equal to zero and the rigidity   replaced by the bending rigidity    :  
   

    
 

  
(   

   

   )                                                                     (1) 

where   is the deflection of the beam,   is the intensity of the distributed charge,   is the normal effort. 

Let's put (1) in the form of a system of two second-order differential equations. For that, let's introduce the following expression: 

   
   

                                                                                    (2)    

In this case (1) will be written as follows: 

   

     (   
   

   )                                                                      (3) 

When we introduce (2) in (3), we obtain (1). This allows the verification of the transformation performed. Now let's write (3) 

taking into consideration (2): 

   

     (    
 

  
)                                                                            (4) 

  is considered positive when we have compression. In this case (4) is written by changing the sign of  : 
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)                                                                          (5) 

Thus, instead of (1), we obtain (5) and (2). 

 

3. METODOLOGY OF THE IMPLEMENTATION OF THE SUCCESSIVE APPROXIMATION 

METHOD (SAM) 

3.1  Introduction of New Dimensionless Parameters 

 Let us write (5) and (2) as functions of dimensionless parameters. Switching to dimensionless parameters solves not only a 

single problem, but a whole series of problems. 

Thus, from (5), (2), it follows: 
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where      
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  is the span of the beam;    is the intensity of the distributed charge  ( ) is the intensity of a fixed charge. 

When we put (8) in (6) and (7), we obtain (5) and (2). 

From (8), we notice that by solving (6) and (7), for the fixed values of   and   with respect to    and     , we obtain the results 

for any value of   ,   and   . 

The differential equations (6), (7) are resolved taking into consideration the following boundary conditions: 

    Articulated support:      ;     .                            (9)      

    Recessed support:      ;      
 .                      (10)       

    Free edge:      ;      
     .                               (11)             

In (9) – (11):    
  

  
 ;     

  

  
  are dimensionless derivatives of   and   respectively;   

  

  
       is the shear 

force;         
    

   are the values of           respectively. In some particular cases those values are equal to zero. 

In the second equality of (11), the component     represents the projection of  ̅, compression load of   on the end of the 

deformed axis of the beam. 

From Figure 1:  ̅            since the angle is too small               ; in this case   

 ̅       ; the projection of  shear force              because         
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Figure 1. Representation of the components of the force   

 

To build the numerical algorithm of computation, (6) and (7) must be replaced by the finite difference equations of the successive 

approximations method (SAM). 

 

3.2  Substitution of the Differential Dimensionless Equations by the Finite Difference Equations of Successive 

Approximation Method 

 

 In [11], the differential equation of second order… …….  
   

   
                                            (12) 

Can be substituted for the nod   of a regular mesh with a step   see Figure 2 by the finite difference equation of SAM: 
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where      
  

  
           

  

  
             

 
    

              
 

    
       

    
   

 
 
    

 
             

   
 

 
    

 
              

 

 

 

 

 

 

 

 

  

 Since in the deduction (13), it has been assumed in [2] that the functions     and their first derivatives can be 

discontinuous at certain nods of the mesh. The values of            have left upper indices 'g' and’d’. These indices indicate that 

they are the values of            in the neighborhood of the nod   respectively on the left and on the right. 

 On the hand-end nods of the beam, if we denote it by  , then (1.12) can be substituted by the finite difference equation of 

SAM:  
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   )                                               (14) 

From the comparison of (12) and (6), it follows that to substitute (6), it suffices in (13), (14)      and    to replace respectively by 

    and     : 

  
      

 
   

 
            

   
  

  
[ (    )   

    (    )
 

  (    )
 

   ]+ 

 
   

  
 (    )  

  

  
 (    ) 

                                           (15) 

   
      

 
    

  

  
(    ) 

  
  

  
[ (    )  (    )

 
   ]                  (16)                  

 

Transforms (15), (16), assuming that only    and    are variable and discontinuous,   is constant. This numerical approach makes 

it possible to take into consideration the discontinuity of  , as well as the calculation of the beams of variable rigidity laying or not 

on flexible foundations. 

Here we will limit ourselves to the beams of constant rigidity not laying on a flexible foundation. 

From (15) and (16) we obtain: 
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Figure 2. regular mesh 
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 Comparing (6) and (7), it follows that to substitute (7), simply replace in (7) and (18)     respectively by       and put  

    . In this case, we consider that         . After this we get: 

 

               
  

  
(   

       
 

   
 

   )  
   

  
    

  

  
   

                      (19) 

   
          

  

  
  

  
  

  
(     

 
   )                                                                  (20)                  

 The equations (17) to (20) when     correspond to those obtained in [2] for the calculation of the bending beams if in 

these last equations one introduces the coefficient     which takes into consideration the variation of rigidity. Equations (18), 

(20) are written for the nod   of the left hand-end of the beam. For the right hand-end of the beam, these equations can be written 

in substitutes         respectively by         and           change their sign: 
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3.3  Implementation of an Algorithm of the Calculation 

The algorithm for calculating on a regular mesh is as follows. For all the points of the mesh located inside the domain of 

integration one writes (17), (19) taking into consideration of boundary conditions. For a beam with two articulated ends, these 

equations are solved simultaneously by considering the boundary conditions (9), where    =       at the ends. In the other 

cases of the limit conditions one associates with (17), (19) either (18), (11) for a free end or (19), (10) for a recess end. The 

resolution of the equations thus obtained makes it possible to determine    and  . From the formula (18) one can determine 

values of    and    and the shear force will be calculated by following formula:        . Thus digital resolution gives complete 

results. All parameters of the stress state of the beam are determined.  

 

4. NUMERICAL VALIDATION OF THE THEORY 

 As a first exercise, consider a beam shown in the Figure 3. The dimensionless span of the beam is equal to  ;      ; 

in addition       
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 The method of successive approximations makes it possible to obtain solutions with a very high precision even with a 

curse mesh. 

Here we will take    ; the nods for which the equations will be written are the nods   and   which coincide with the hand-ends 

of the beam: 

Boundary conditions when    , according to (11)     ,   
      

  ;  

for               ,   
    

 The unknowns are                
 . For nod 1, write (18), (20) taking into consideration the boundary conditions and 

          :  
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For nod   write equations (21), (22): 
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 By solving (23), (24) with respect to         
           

 , we obtain in particular           . The exact value of    

obtained in [3] is           . As a result, the difference is 1.1%. 

 How to obtain if necessary the improvement of the result? For that, it is enough to increase the number of meshes that is to 

say to use a mesh more tightened for the computation. We can introduce a nod in the middle of the beam except the nods at the 

P    

𝜉 

            1                                                    2 
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Figure 3. Compressed cantilever beam uniformly loaded throughout its 

length 
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ends see Figure 3; at this time   
 

 
. Equations (18), (20)-(22) should be written considering   

 

 
. And at the same time, for the 

nod at the middle of the beam, one must write (17) and (19). These equations will not be presented here, since we will consider a 

second example in the following for   
 

 
, but with a different load case see Figure 4. 

 We denote only that the results obtained when   
 

 
     

 

 
     

 

 
   for the point at the recess are respectively    

                    . It can be noted that with the increase in the number of meshes, the numerical solution converges 

towards the exact value. 

 As a second example, consider the same beam as in the previous example, but with a concentrated force    
     in the 

middle. Figure 4 shows a minimum mesh for this type of loading.  

 

 

 

 

 

 

 

 

 

The boundary conditions are the same as in the previous example. For nods 1 and 3, write (18), (20) to (22) taking into 

consideration   
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For the nod 2 we write (17), (19) while      : 
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 We thus obtain (25), (26) with six unknowns. By solving this system of equations we obtain in particular:    

             
        . 

 By increasing the number of meshes twice, we improve the result using the computer: For   
 

 
     

 

 
, we obtain for    

the following values        ;         respectively.  

A question may arise, how to evaluate the error, if exact solution is not known. The practical question of solving this type 

of problems, that is to say the numerical algorithm, cannot be useful. The calculation error can be appreciated by studying the 

static balance of the beam. The resultant of the external load is   in this case. According to the rules of the Resistance of 

Materials, the shear force    at point 3 is equal to        when   
 

 
, and is directed upwards. The projection of the horizontal 

force      is equal to zero. Therefore the balance of the beam is satisfied with an error of      . 

 The two previous examples made it possible to show the effectiveness of the use of the boundary conditions for the free 

and embedded ends, thus the influence of a concentrated transverse load which leads to a discontinuity of     at nod  . 

The third example will be devoted to the calculation of a beam placed on two articulated supports subjected to a uniformly 

distributed load on its half, a normal load of traction see Figure 5. This example makes it possible to highlight the discontinuity of 

the loads and the boundary conditions for the articulated supports. 

The boundary conditions are:               

 According to the data:                                                  
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Let's write (17), (19) for the point    : 
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Figure 4. Compressed cantilever beam loaded in the middle by a concentrated 

force 
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We see that for articulated supports, (27) can be solved in a grouped way; that is, we determine   first, then we determine  . For 

the present case, we obtain:                             . In the case of a complete loading of the beam,     and (17) 

must be written as follows: 

  (  
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(        ).        (28) 

 

From (28), we obtain          , which is twice as large as the value obtained for half loading. This value is practically equal 

to the exact value that is            obtained in [4]. 

 

5.  COCLUSION 

At the end of this work we succeeded in transforming the fourth-order differential equation into a system of two differential 

equations. Then we replaced the parameters of the system equations, as well as those of the boundary conditions by dimensionless 

parameters. The equations thus obtained have been substituted by the finite difference equations of the Successive Approximation 

method. This allowed us to obtain systems of algebraic equations whose resolution taking into consideration the boundary 

conditions was carried out using the iterative Gauss-Seidel method. This allowed us to avoid the preliminary formulation of 

matrix with unknowns. The algorithm developed here is simple and made it possible to solve the calculation problems of tri 

constant thickness isotropic thin beams subjected to flexion combined with compression. Different combinations of the most 

commonly encountered boundary conditions were examined with different type of loads. The results obtained in the various 

examples show good convergence. Which shows the stability of the method. 
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