

International Journal of

Advances in Scientific Research and Engineering (ijasre)

E-ISSN : 2454-8006

DOI: http://dx.doi.org/10.31695/IJASRE.2018.32753

Volume 4, Issue 6
June - 2018

www.ijasre.net Page 82

Secure Access Image with an Encrypted key in NOSQL

Swetha Siriah and Bhushan Deshpande

Department of Computer Science

KITS

Nagpur, India

ABSTRACT

Space, Time and Privacy has become a key requirement for data management systems. The, NoSQL data stores, namely highly

compress data on non-relational database management systems, which provides data management of internet user program, still

do not provide support. It consists of the enhancement of the MongoDB level based access protected model along with privacy

keys for security and monitor. The suggested system monitor is easily used for any MongoDB application control with secured

protection for data security. Using the Encrypted storage engine, the plaintext is encrypted using an algorithm and generates

ciphertext, this ciphertext can only be decrypted with the decryption key. In addition, wide experiments show that the MongoDB

achieves better efficiency than relational database in terms of data access and calculating.

Keywords : MongoDB, Database Security, Access Policy, Privacy Protection.

__

1. INTRODUCTION

 Over several servers NoSQL datastores are developing non-relational databases to provide high security for database

operations. For efficiently handling high volumes of heterogeneous and even unstructured data these platforms are getting

attention by companies and organizations. Even though NoSQL data stores can handle high volumes of private and sensitive

information, but up to now majority of these systems provide poor privacy and security protection. Early research contributions

started to study these issues, but they have mainly targeted security aspects. According to information, privacy-aware access

control for NoSQL systems was not work targeted, but we believe that, similar to what has been for privacy policies. We begin to

solve this issue, with this work, by proposing a method for the secured data purpose-based policy capabilities into the most

popular NoSQL data store known as MongoDB. Privacy-aware access control proposed for relational DBMSs, is an urgency for

NoSQL data stores as well. However, where all existent systems refer to the same data model and query language which is

different from relational databases, NoSQL data stores operate with various languages and data models. This variety makes the

definition of a general approach to have of privacy-aware access control into NoSQL datastores a very important goal. To define

such a general solution we believe that a stepwise approach is necessary. As such, in this, we start concentrating on: 1) a single

datastore, and 2) selected rules for privacy policies. We approach the problem by focusing on the most popular NoSQL datastore

called MongoDB, which ranks second, according to the DB-Engines Ranking.

MongoDB uses a document-oriented data model. Data are modeled as documents, namely records, possibly images collections

that are stored into a database [1]. We have studied several privacy-aware access control models proposed for relational DBMSs

to identify the features of privacy policies to be supported. In all the analyzed models [2] privacy policies require rule based and

enforcement mechanisms, as owners can have different data and different privacy requirements according to their policy on data.

The aim to have accessed with those for which they are stored is considered as the key required condition to grant the access is

thus the important of any privacy policy. MongoDB is documents based databases. Different from other relational databases,

arbitrary type data can be stored in a document in MongoDB. However, existing MongoDB products provide poor privacy and

security protection. In this, we proposed a privacy access policy, by taking some credential from user and encrypting it which

guarantee strong privacy for user sensitive information and high performance in MongoDB.

http://www.ijasre.net/
http://www.ijasre.net/
http://dx.doi.org/10.31695/IJASRE.2018.32753

Swetha Siriah et al., Secure Access Image with Encrypted key …

www.ijasre.net Page 83

II. ANALYSIS AND DESIGN

 Recommendation of index type for planned indexes. To build a certain order of combined indexes out of fields of each

frequent query, using frequent itemset as a method. To select the final recommended indexes query optimizer is used. Our

approach to create virtual indexes which removes any modification in the database. Applying the approach to a document-based

NoSQL database. The typical setting involves two user: one that gets information from the other that is either to share the

requested information. Finally there is a conflict between information sharing and privacy.

 Figure 1. Data Encrypted Key System

Were as the, sensitive data needs to be kept confidential as the owners may be willing, or forced, to share information The

general approach to the rule of privacy-aware access control into NoSQL data stores a very important goal. Users who have a

proper authorization are only allowed to execute for access purposes. Purpose authorizations are granted to users as well as to

roles. In the MongoDB data storage and network transfer type for documents, simple and fast. The important requirements

compulsory that the encryption keys must be rotated and replaced with a new key at least once annually. By performing rolling

restarts of the replica set MongoDB can achieve key rotation without incurring downtime. The database files themselves do not

need to be re-encrypted when using appliance, thereby avoiding the significant performance overhead imposed by key rotation in

other databases. The master key is only rotated, and the internal database key store is re-encrypted.

III. RESULT AND DISCUSSION

Mongo DB stores its data in BSON. The server has many databases, for each database it has many of collections. They are like

tables in a relational store. We only need a single collection to model our data. We see BSON come back representing our data, if

we were to query the Post collection from the shell (after inserting some data).

Data flow

Step 1: Start mongo server from command prompt, go to bin directory where the mongo server start the port. Then the monog.exe

will start the mongo server.

Step 2: At second step client will log using user id and password in the system and authenticate itself. Application server checks

the client is authorized or not and grant permission to the client to access the database.

Step 3: The step 3 provide two types of access from where we can upload image with access control and other types of file. This

also gives the access to admin panel.

Step 4: For image uploading the required parameter is taken from client and by applying algorithm the encrypted key is generated.

Then file breaks into chunks and stored in mongo server.

Step 5: For insertion operation, application server store the encrypted key for data into one collection of database and retrieve the

encrypted key for data from another collections from mongo database.

Step 6: For the other file format same steps are repeated but these are directly converted to document type.

The list of Mongo Picture Model objects retrieved from the database is return by this function. Here we did different thing, is use

of Set Fields function to reduce the fields we bring back. We will only need the filename and ids of the pictures and not the data

for the gallery page. First, _id is our identifier. While the probably figured that out, you may not know some of the ins and outs. If

you don't provide _id then it will be automatically generated. Since this record, a type of object called an Object Id was used. This

 International Journal of Advances in Scientific Research and Engineering (ijasre), Vol 4 (6), June - 2018

www.ijasre.net Page 84

DOI: 10.31695/IJASRE.2018.32753

type is of information on Mongo DB's web server, which has all the client-side implementations, including MongoDB-C Sharp.

MongoDB-C Sharp specify either to create own identifier, or you can use GUID type of auto-generated identifiers also. Second,

the comments are stored as an array and stored in right within the Post document. As stated earlier, if it is already a part of the

document, then to have no need of performing a join to get all the information to need about a post. Recommendation of index

type for proposed indexes. To build a certain order of combined indexes out of fields of each frequent query we use frequent

itemset as a method. Use of query optimizer to select the final recommended indexes. The approach to create virtual indexes

which removes any modification in the database. Applying the approach to a document-based NoSQL database. The typical

setting includes two user: one that gets information from the other that is either to share the requested information.

Figure 2. Image Key encryption

From bitmap file the Save Image button code creates a FileStream object, opens a connection with the database, adds a new data

row, set its values, and saves the row back to the database. After the data been saved, the next step is to read data from the

database table, save it as a bitmap again, and view the bitmap on the form. By using the Graphics we can view an image.

DrawImage method or using a picture box.

Therefore, there is a tension between information sharing and privacy. On the one hand, sensitive data of the user needs to be kept

confidential; on the other hand, data owners may be forced, to share information. The general approach to the rule of privacy-

aware access control into NoSQL data stores a very important goal. Users with proper authorization are only allowed to execute

for access purposes. Purpose authorizations are granted to users as well as to roles. The data storage and network transfer format

for documents, fast and simple. Sign and Rotate Encryption Keys. Disk encryption and encryption keys for network should be

periodically rotated. To ensure that clients can certify the credentials they receive from server components, encryption channels

should use signed certificates. By default, the encrypted parts of documents are authenticated along with the id to prevent

copy/paste attacks by an attacker with database write access. If you use one of the above options such that only part of your

document is encrypted, you might want to authenticate the fields kept in clear text to prevent tampering. In particular, consider

authenticating any fields used for authorization. The important of any privacy policy is, the purposes for which data should be

accessed with those for which they are stored is considered as the key required condition to grant the access. As such, for our

proposal fine grained purpose-based policies have been selected as the target policy type. MongoDB enforces access control at

collection level and integrates based access control model which supports role management and user. However, no support is

provided for purpose-based policies. In this work MongoDB RBAC is extended with the support for purpose-based policy

specification and enforcement at document level. More precisely, the MongoDB RBAC model operates at the rule level,

integrating the required support for purpose related concepts. On top of this, to operate in any MongoDB deployment we have

developed an efficient enforcement monitor. Within a MongoDB deployment the client/server architecture, where MongoDB

server front-end interacts, through message exchange, with many MongoDB clients. Mem operates as a proxy in between a

MongoDB clients and its server, the flow of messages that are exchanged by the counterparts are monitored and possibly altered

by Mem. Access control is enforced by means of MongoDB message rewriting. More precisely, either injects additional

http://dx.doi.org/10.31695/IJASRE.2018.32753

Swetha Siriah et al., Secure Access Image with Encrypted key …

www.ijasre.net Page 85

messages that encode commands or queries, or forwards the intercepted message to the respective destination. In case the

intercepted message encodes a query, it writes it in such a way that it can only access documents for which the specified policies

are satisfied. The integration of data into a MongoDB deployment is straightforward and only requires a simple configuration. No

programming activity is required to system administrators. Additionally, to operate with any MongoDB driver and different

MongoDB versions Meme has been designed. First experiments conducted on a MongoDB dataset of realistic size have shown a

low enforcement overhead which has never compromised query usability.

The below Figure. 3 shows comparisons between time required by MongoDB and SQL. It shows MongoDB require less time

compare to SQL.

Figure 3. Image retrieval comparative graph

This shows that when image is retrieve from MongoDB in the form of chucks along with security access level encrypted key with

password is calculated on the basis of time required for it. Similarly the same file is retrieve from SQL server which takes more

time without the encrypted key. The graph show the execution time comparison between the NoSQL and SQL system, which

proves that time require in NoSQL is less than the time required by SQL server. Since NoSQL stores the image in document type

format which requires the less time and fast execution. This shows that algorithm takes less time as compared to the data storage

in mongo DB. The blue line indicates the amount data to be encrypted on the mongo server and the line in red gives the time take

by the encrypted data to generate the encrypted keys with encryption. In this we use triple DES to encrypt our data.

IV. CONCLUSIONS

The Purpose aim and related give mechanisms to secure the access at document level on the basis of purpose and key assign

policies. To implement the proposed security, the monitor has been designed. This operates as a between MongoDB user and a

MongoDB server, and enforces access control by monitoring and possibly manipulating the flow of exchanged messages.

Furthermore, to the support for multiple NoSQL datastores we plan to generalize the presented approach.

REFERENCE

[1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocraticdatabases. In28th International Conference on Very Large

Data Bases(VLDB), 2002.

[2] K. Browder and M. A. Davidson. The Virtual Private Database inOracle9iR2. Technical report, 2002. Oracle Technical

White Paper.

[3] J. Byun and N. Li. Purpose based access control for privacy protection in relational database systems.The VLDB Journal,

17(4), 2008.

 International Journal of Advances in Scientific Research and Engineering (ijasre), Vol 4 (6), June - 2018

www.ijasre.net Page 86

DOI: 10.31695/IJASRE.2018.32753

[4]]R. Cattell. Scalable SQL and NoSQL Data Stores. SIGMOD Rec., 39(4):12–27, May 2011

 [5] A. Cavoukian. Privacy by Design: leadership, methods, and results. In S. Gutwirth, R. Leenes, P. de Hert, and Y.

Poullet, editors, European Data Protection: Coming of Age. Springer, 2013.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.

Bigtable: A distributed storage system for structured data. ACM Transaction on Computer Systems (TOCS), 26(2):4, 2008.

[7] P. Colombo and E. Ferrari. Enforcement of purpose based access control within relational database management systems.

IEEE Transactions on Knowledge and Data Engineering (TKDE), 26(11), 2014.

[8] P. Colombo and E. Ferrari. Enforcing obligations within relational database management systems. IEEE Transactions on

Dependable and Secure Computing (TDSC), 11(4), 2014.

[9] P. Colombo and E. Ferrari. Efficient enforcement of action aware purpose-based access control within relational database

management systems. IEEE Transactions on Knowledge and Data Engineering, 27(8), 2015.

[10] P. Colombo and E. Ferrari. Privacy aware access control for big data: A research roadmap. Big Data Research, 2015.

http://dx.doi.org/10.31695/IJASRE.2018.32753

