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ABSTRACT 

We investigate shear banding phenomena in the plane Couette flow of viscoelastic fluids.The viscoelastic fluids are modelled via 

the Giesekus constitutive equations with stress diffusion. The nonlinear and coupled  systems  of  equations,  comprising  the  

momentum  equation  and the  constitutive  equations,  are solved numerically using semi-implicit finite difference methods. The 

effects of the fluid parameters on the flow variables are also investigated. Under certain values of the material parameters, we 

observe formation of shear bands in plane Couette flow. 
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_______________________________________________________________________________________________ 

1.INTRODUCTION 

In the recent years, it has been observed that the flow of viscoelastic fluids display unusual flow behavior even in simple 

geometries.   Some  of  these  unusual  flow  patterns  result  from  complex  flow  instabilities such as shear banding.  Shear 

banding is characterized  by an apparent discontinuity in the flow profile which  occur  when  shear  rate  takes  two  distinct  

values  corresponding  to  low  and  high  shear  rate. Discontinuity in the shear rate arise when a fluid under shear forces is 

deformed beyond a certain critical point [1]. Shear banding has been observed to occur in shear flow of viscoelastic fluids such as 

wormlike micelles, foams, polymeric gels, polymer melts, emulsions and granular materials.  These materials have recently drawn 

interest to researchers due to their wide range of applications and great relevance in science, medicine, engineering and technology 

[2, 3].  Even though shear banding has always been physically observed in real flows of viscoelastic fluids, there has been an 

incomplete understanding of their origins and formations. This  paper,  thus,  explores  shear  banding  phenomena  with  the  aim  

of  enhancing  the understanding of their rheological behavior. 

There exists a review work on various model types used to study viscoelasticity and are well summarized by [4, 5].  In this 

paper, however, we choose to use the Giesekus model discussed by Joseph [6], which has been widely used in the rheology of 

viscoelastic fluids.  The Giesekus model has attracted a lot of interest in the past because of its three main advantages.  Firstly, the 

Giesekus model presents constitutive law which provides a mechanism to control the elongational property of viscoelastic 

materials.  Secondly, the Giesekus  model  provides  realistic  behavior  for  both  shear  flows  and  shear-free  flows.  It predicts 

well the shear thinning, shear viscosity and other behavior of complex flows.  Lastly, the model is explicitly described by two 

material parameters; the zero-shear- rate viscosity    and the stress relaxation time  , together with dimensionless anisotropy-

mobility factor  , [7].  However, the model is characterized by a quadratic term in the stress tensor which makes it non-linear. 

The rheology of viscoelastic fluids has been widely studied, for instance, Baumert and Muller [8] gave a  considerable  

attention  to  elastic  Taylor-Couette  instability  in  Boger  fluids  in  a  bid  to  understand viscoelastic  instabilities.  Shear  flow  

instabilities  and  their  origin  have  been  discussed  and  summarized by Wilson et al.  [9].  Polymer processing of materials such 

as polymer melts, plastics and other synthetic fiber products together with low Reynolds number instabilities  involved have been 

reviewed by Larson [10].  Wormlike micelles have been widely used to investigate complex instabilities in viscoelastic fluids, for 

instance, Team [11] conducted a research on shear banding of aqueous wormlike micellar solution and gave a summary of their 

complex micro-structural properties of viscosity and elasticity.  Britton et al.  [12] used conventional rheometry and velocimetry to 
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investigate shear banding in Couette flow of viscoelastic materials and observed dynamical complex instabilities in shear bands.  

There is a vast literature on numerical methods for solving complex equations of viscoelastic flows, [13, 14].  For instance, the 

theory of constitutive equations for unsteady flows of viscoelastic materials and their numerical solutions using finite difference 

schemes were summarized by Tom et al.  [15].  Formulation of finite difference methods for  structured  grids  involving  higher  

order  terms  have  been  documented  by  Hirsch  [16].   Despite  the intensive research and numerous efforts, the numerical  

approximations of viscoelastic flows still poses a challenge to researchers due to the nonlinearity and flow instabilities caused by 

the elasticity and viscosity behavior  of  the  fluid.   The  objective  of  this  review  is  to  use  the  Giesekus  model  to  obtain  

numerical approximations  of  viscoelastic  flows  and  analyze  shear  banding  instability  in  planar  Couette  flow,  by using 

finite difference method for both space and time. 

 

2. THE GIESEKUS MODEL 

Giesekus introduced the constitutive law (2.3) expressed in terms of the upper convected derivative [6], which  together  with  the  

continuity  equation  (2.1)  and  momentum  equation  (2.2)  completes  the model.  We thus use the following system of equations 

of the Giesekus model to describe the motion of an incompressible viscoelastic fluid in terms of the conformation tensor; 

 

 Continuity equation: 

                            (2.1) 

 

 Cauchy equation:   

   
  

  
              ̿                 (2.2)  

 

 Time evaluation equation for the conformation tensor:  
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where   is the velocity of the fluid,   is the total mass density,   the pressure ,   ̿ the deviatoric stress,  ̿ the conformation tensor, 

   the characteristic relaxation time,   the anisotropy factor for hydrodynamic interactions,    diffuson  coefficient,     solvent  

viscosity,     the spring  constant,      and   are the viscoelastic parameters.  The fourth term on the right hand side of equation 

(2.3) represents the nonlinear relaxation term while the fifth term corresponds to the stress diffusive term. 

 

Deviatoric stress is given by; 

       ̿   ̿        

 

where   ̿    (  ̿   )̿ is  the  polymer  stress  tensor,     the  modulus  of  elasticity,   
 

   
 and    

 

 
[   (  ) ] is the 

deformation rate of strain. The initial and boundary conditions prescribed at the solid walls are discussed in the next section. 

We use the Giesekus model in the subsequent section to analyze the shear banding formed in a viscoelastic fluid flowing in a 

Couette flow configuration in which the fluid moves between two moving parallel plates. The two wall boundaries can be moving 

in the same or opposite direction with uniform velocity     and   respectively. 

 

 

3. PLANE COUETTE FLOW 

We consider a Couette flow in a 2D-rectangular coordinate system directed in the  direction as shown below, with the upper 

plate moving with a velocity ̅  and the lower plate fixed. 
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Figure 1:  Plane Couette flow 

 

 

Since the flow is in Cartesian system with   in the stream-wise direction and   in the transverse direction, we take 

   ( ( )  )   
  

  
   and  

 ( )

  
   

We now write the governing equations in Cartesian form. 

Continuity equation (2.1) becomes; 

                                                                            
  

  
         (3.1) 

 

An explicit expression for deviatoric stress is given by 
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 In Cartesian form this expression reduces into a system of three equations by symmetry: 
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Using the above equations, the conservation of momentum (2.2) in Cartesian form becomes; 
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The time evolution equation for the conformation tensor given by (2.3) can be rewritten as; 
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The terms on the left hand  side  of  the  equal  sign  represents  the  upper-convected  time  derivative.  On the right hand side we 

have, the linear term, constant, non-linear term and diffusion term respectively. Expanding these terms individually, Equation 

(3.3) gives us a matrix equation which by symmetry reduces into a system of three time evolution equations for the conformation 

tensor: 
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Considering one wall is fixed we have the initial conditions:   ̅(   )    and  ̿    as    , the no slip conditions: 

  ̅(   )    and  ̅(   )   ̅, together with the stress condition: 
  

  
   at the walls. 

 

4. METHOD OF SOLUTION 

We approximate the solution of the governing equations using finite difference method.  We first define a set of grid points in 

our domain   such that (   )   . Assuming a uniformly spaced interval         and a uniform time interval           ,  

where   is the length  and   the maximum time,  we make the following choices; 

• State step size    
   

 
 

 

• Time step size     
 

 
 

 

We denote the solution in the point (      ) by   
   (      ) and assume that         and     is the total number of spatial 

points.  When discretizing the governing equations, we assume that the solution at the current time step    is known and      is 

unknown.  We thus collect similar terms and bring all the unknowns to the left and the known to the right. 

 

To obtain the numerical scheme for Cauchy equation we discretize equation (3.2) as follows: 
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We let    
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Collecting all terms involving       time step to the left we obtain the required scheme: 
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In a similar way, numerical schemes for time evolution equation (3.4), (3.5) and (3.6) respectively are obtained below. 
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Discretizing the initial and boundary conditions we get the following initial conditions;   
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5. EXPERIMENTS AND FITTIN PROCEDURE 

The experimental data we report in this paper is for the non-linear viscoelastic fluids that exhibits shear banding and that are 

described by the Giesekus model.  The  values  assigned  to  the  parameters  of  the model  were  determined  as follows:  the  

effective value  of time  relaxation  parameter was determined  by fitting the model to small amplitude oscillatory shear data.  The 

effective value of solvent viscosity was determined by adjusting different values until a shear banded velocity profile was obtained 

while keeping a good agreement with shear stress.   The  equilibrium  breakage  point  was  determined  by  setting  the model  to  

steady  state  while  keeping  a  good  agreement  with  viscosity  and  relaxation  time.  Anisotropy factor was estimated by fitting 

the model to a steady state while keeping a good agreement with shear stress.  A moderate diffusion coefficient was obtained by 

choosing the value that gave a smooth transition between the shear bands.  The values assigned to the parameters used in this 

model are provided in the table below.  We used       number of points and time step size           all through. 

 

 

 

 

 

 

 

 

 

Table 1:  Values assigned to parameters used in the model. 

 

 

6. RESULTS AND DISCUSSION 

In this section we analyze and discuss the results predicted by the Giesekus model for transient and steady shear.  Figure 2 

shows the variation of the fluid velocity and the stress components with   for the purely viscous  Newtonian  fluid  obtained  by  

setting  conformation  tensor  equal  to  zero  in  the  full  model  given by equations (   )  (   )   This result is very important 

for code validation.  By setting conformation tensors equal to zero, all the viscoelastic variables are vanished as expected; hence 

we recover the predicted linear fluid velocity profile, which is a solution to Equation (   )  

 

Parameter Symbol                 Value 

Solvent viscosity                      

Modulus of elasticity             

Relaxation time                       

Anisotropy factor             

Diffusion coefficient           

Viscoelastic parameter     
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Figure 2:  Purely viscous Newtonian fluid obtained by setting conformation tensors equal to zero in our full model.  The 

velocity profile is a straight line and the stress components are all equal to zero. 

 

Figure   shows antisymmetric case for a viscoelastic non-Newtonian fluid obtained by setting the lower wall  fixed  and  

the  upper  wall  moving  with  a  velocity         .  Figure 3a  shows  fluctuation  of  the velocity  profile  which  results  into  

two  banding  regions.   The  lower  band  within  the  range            of     values,  represents  low  shear  rate  of  a  linear  

and  homogeneous  viscoelastic  flow  that  occur  before deformation.  On the other hand, the upper band between           

represents high shear rate region occurring after deformation. The smooth edge separating the two bands at        corresponds 

to the stress plateau that connects the two bands to ensure continuity. 

Figure  3b  shows  a  S-shaped  shear  stress  profile  within  a  very  small  sheared  region  of  almost  constant shear 

stress of about       .  The sheared thickness is a small gap scaled from              . The curve between        and 

        corresponds to the transient flow that occur within a short period after a preshear.  Moreover, the line between 

     and      corresponds to the steady state shear that occur around a critical stress of about             .  When shear rate 

exceeds characteristic relaxation time required to attain steady state after a disturbance, the profile bocomes unstable as seen 

between       and      . 

Figure 3c shows the first normal stress difference against   . Similar  to     ,      lies  within  a  too small  stress  interval  

of  about            to        ,  which  gives  a  critical  normal  stress  value  of  about        .   This  implies  that  there  

is  no  significant  difference  in  the  sheared  stress  between  the  two sheared regions. 

Clearly,  Figure  3d  shows  a  constant  stress          which  similarly  shows  that  we  can  have  two shear bands 

with almost same shear stress.  We can thus conclude that velocity varies in a wide range of values as shear stress remains around 

critical shear stress of about               and normal stress of about         and        .  It is thus evidently observed 

that shear banding does not depend on the separation  , hence we can deduce that it is a material property. 
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Figure  3:  Antisymmetric  case  for  a  viscoelastic  fluid  obtained  by  setting  the  lower  wall  fixed  and  the upper wall 

moving with velocity         .  Two shear bands are formed in the velocity profile.  Shear stress profile is within a 

very small sheared region of almost constant shear stress.  Normal stress profile also lies within a very small gap of almost 

uniform stress.      stays at one Pascal. 

 

 

Figure 4 shows a symmetric case for the velocity profile and  the components  of  conformation  tensor obtained by setting 

the upper and the lower wall moving in opposite directions with velocities         and          respectively.  The 

velocity profile, in Figure 4a shows coexistence of three sheared regions flowing at different shear rates but almost similar shear 

stress.  The lower band from           and the topmost band from            have the same velocity and corresponds to 

high shear rate.  The middle band  on  the  other  hand  is  a  linear  region  corresponding  to  low  shear  rate. To ensure 

continuity, the three bands are separated by a smooth stress plateau.  Figures 4b and 4c show catenary-shaped curves of shear 

stress     and normal stress     respectively.  In both cases the time evolution of shear stress is depicted clearly from the transient 

state to steady state region.  The left hand side of the curve shows adecreasing shear stress connected smoothly with an increasing 

shear stress on the right. The decreasing shear stress corresponds  to           while  the  increasing  shear  stress  

corresponds  to          .   But  all  the  same,  the  sheared  region  is  within  a  very  small  interval  as  shown  in     

profile. Figure 4d  gives  a  straight  horizontal  line  at          which  corresponds  to       .   This is a similar result to 

antisymmetric case discussed above.  As a matter of fact, the diagonal component of conformation     stays at a constant equal to 

  for all our computation. 
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Figure 4:  Symmetric case for a viscoelastic fluid obtained by setting the upper and the lower wall moving with velocity 

          and           respectively.  Three shear bands are formed in the velocity profile.  Both shear and 

normal stress profiles lie within a very small gap of almost constant shear stress. 

 

Figure 5 and 6 show the development of steady solution with time for the entire flow profile.  We notice convergence of 

the maximum flow quantities for both antisymmetric and symmetric cases.  For antisymmetric case all the solutions attain steady 

state at time         while for symmetric case all the solutions attain steady state at time       .  For the velocity profile in 

Figure 5, the curve at         appear to have a very sharp bend but with time the bend reduces until a steady solution is attained 

at         , which corresponds to       time steps using          .  For velocity profile in Figure 6, the curve at        

appear to also have a very sharp bend but with time the bend reduces until a steady solution is attained at        , which 

corresponds to      time steps using          .  The velocity profile increases smoothly until a steady state is attained.  For the 

components of conformation tensor, the shear profiles at  initial  time          appear  to  oscillate  with  a  large  amplitude  

compared  to  the  amplitude  at  steady state.  For the diagonal component    , the profile remains constant.  The model predicts 

the overshoot of the shear stress occurring during the initial stage of the non-linear deformation.  The development of the steady 

solution with time and the convergence of the entire flow profile imply that these solutions are independent of time. 
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Figure  5:  Development  of  steady  flow  profiles  with               in  the  antisymmetric  case.   Entire flow profiles are 

converged at          . 

 

 

 
 

Figure 6:  Development of steady flow profiles in the symmetric case with           .  Entire flow profiles converge at 

       . 

 

So  far  we  have  used  a  fixed  set  of  values  for  the  flow  parameters.  We now give a broad picture of the dependence 

of solutions on flow parameters.  We only consider antisymmetric configuration for all parameter dependence solutions. Figures 

      respectively, show the dependence of maximum fluid velocities and conformation tensor components with the diffusivity 

parameter  , concentration  , anisotropy factor  , relaxation time parameter  , elasticity parameter   , a viscoelastic parameter   

and velocity  ̅  All graphs are plotted using parametric values provided in Table 1. 
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Figure 7 shows the variation of flow quantities with the diffusion coefficient.  As expected, the parameter   in Equation 

(   ) increases the stress components together with the viscous term which in turn reduces the velocity.  As seen in the velocity 

profile, it’s clear that the magnitude of diffusion coefficient determines the transition between the two bands.  A large diffusivity 

cause a large bend in the velocity curve whereas lowering diffusivity makes the curve smooth. In all these cases     stays at a 

constant equal to     all through. 

Figure  8  shows  that  high  level  of  concentration   ,  reduces  the  velocity  but  increases  the  intensity  of the stress 

components.  This was clearly expected from Equation (   ) where density lowers velocity by increasing viscosity and stress.   As  

a  matter  of  fact,  density  is  the  dominating  parameter  with  a  wide range of values. 

As Figure 9 displays, the parameter   shows no significant effects on the fluid velocity and on shear stress    .  Since   is 

not directly attached to the velocity equation nor the viscous terms in the constitutive equation, its only observable effect is on the 

normal stress component    .  It affects the intensity of the normal stress. 

A  slight  increase  in  the  parameter     increases  the  velocity  and  the  intensity  of  stress  components  as shown in 

Figure 10.  In absence of the relaxation effect, shear banding does not occur.  As expected from Equation (3.2),      increases the 

velocity but reduces the intensity of stress components.   This is well depicted in Figure 11.  As we expected, the parameter  

  , leads to an increase in the fluid velocity and a decrease in the viscous term of Equation (   ).  This in turn decreases the stress 

intensity as observed in Figure 12.  Parameter   lowers both fluid velocity and shear stress     as seen in Figure 13, but increases 

normal stresses      and     .  Both       and      attain different constant values corresponding to   . 

As seen in Figure 14, high velocity corresponds to an increase in the shear rate which in turn increases the intensity of the stress 

components.  The resultant effect of high shear rate is an increase in the rate of deformation which causes shear banding. 

 

 

 

Figure 7:  Variation of flow quantities with the diffusion coefficient  .    smoothens the transition region between the two 

shear bands and increases the intensity of stress components.
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Figure 8:  Variation of flow quantities with fluid concentration  .  Density  , lowers the fluid velocity but increases the 

intensity of stress components      and     .       stays at one Pascal. 

 

 

 

 

Figure 9:  Variation of flow quantities with anisotropy factor  .  Parameter α has no observable effect on the velocity 

profile nor the shear stress profile, but it reduces the intensity of the normal stress     
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Figure 10:  Variation of flow quantities with relaxation time  .  A slight increase in   increases both the fluid velocity and 

stress intensity. 

 

 

 

 

Figure 11:  Variation of flow quantities with modulus of elasticity   .  Parameter     raises the velocity but lowers the 

intensity of stress components.
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Figure 12:  Variation of flow quantities with solvent viscosity     .  Parameter     raises the fluid velocity and increases the 

stress intensity up to              beyond which a decrease is noticed. 

 

 

 

 

Figure 13:  Variation of flow quantities with a viscoelastic parameter  .    increases the velocity but lowers both shear and 

normal stresses.
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Figure 14:  Variation of flow quantities with velocity   ̅̅̅ of the moving plate.  Velocity increases both shear stress and 

normal stress.  High velocity corresponds to high shear banding. 

 

 

7. CONCLUSION 

In this paper, we used the Giesekus model to investigate shear banding property of non-linear viscoelastic fluids in the plane 

Couette flow.  Shear banding occurs in a variety of viscoelastic flows such as in shear flow of polymer melts, foams, gels, 

emulsions and wormlike micelles just to name a few, which exhibits non-linear  rheological  behavior.   We  observed  formation  

of  high  and  low  shear  bands  when  the  fluid was  subjected  to  shear  forces.   Low  shear  band  corresponded  to  low  shear  

rate  while  high-shear  band corresponded  to  high  shear  rate.   The Giesekus model predicted a smooth transition between linear 

viscoelastic and shear banding regions with a smooth edge connecting the two bands.  The smooth edge corresponded to a stress 

plateau zone which ensures continuity of the flow profile between the two bands. For  antisymmetric  case  two  shear  bands  

were  formed  while  for  the  symmetric  geometry  three  shear bands were formed.  We observed that shear banding results to 

regions flowing with different velocities but with almost uniform shear stress.   This  explains  the  unstable  flow  behavior  of  

viscoelastic fluids with  time  and  space.   We  also  observed  that  the  concentration  of  visicoelastic  fluid  is  the  dominating 

parameter whose effect lowers the velocity but increases  the intensity of shear stress.  It remains to be experimentally investigated 

in the future whether Germann-Cook-Beris model and Maxwell model can predict similar shear banding results for a viscoelastic 

fluid in a Poiseuille flow. 
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