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ABSTRACT  
Abstract Recently, RNA profiling based on HT sequencing is replacing microarrays for the study of differential gene expression. In 

practice, millions of ‘reads’ are sequenced from random positions of the input RNAs which are computationally mapped on a 

reference genome to reveal a ‘transcriptional map’, where the number of reads aligned to each gene gives a measure of its level of 

expression. The powerful features of RNA-seq, such as high resolution and broad dynamic range, have boosted an unprecedented 

progress of transcriptomics research, producing an impressive amount of data worldwide. To deal with the different steps of data 

analysis several computational tools have been developed and updated at a fast pace which is in fact far more complex and consists 

in several processing steps. In this review, we describe the current RNA-seq analysis framework, focusing on each computational step 

from read preprocessing to differential expression (DE) analysis. We review the methodologies available, along with their underlying 

algorithmic strategies and believe this work can provide a broad overview of RNA-seq analysis and can guide users to define and 

implement their own processing pipeline. 

Key Words: RNA-seq, transcriptomics, DE analysis, HT sequencing, FDR. 

_________________________________________________________________________________________________ 

1. INTRODUCTION  

In case of high throughput (HT) sequencing, a fundamental task is the analysis of count data, such as read counts per gene in 

RNA-seq, for evidence of systematic changes across experimental conditions. DESeq2 is a method for differential analysis of 

count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This 

enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 

package is available at Bioconductor. We mainly focus on the analysis of differential gene expression studies. We discuss 

strategies for package based analysis, non-specific and meta-data driven pre-filtering techniques, and commonly used test statistics 

for detecting differential expression. We show how these strategies and statistical tools are implemented and used in 

Bioconductor. RNA-Seq can be used to quantify and study genome-wide changes in gene expression. Such applications typically 

start with aligning RNA-Seq reads to a reference sequence to identify all expressed genome features. The numbers of reads per 

feature are then calculated to derive feature counts and infer expression levels. Finally, a statistical test is applied to normalized 

feature counts, followed by a collective assessment of significance based on an acceptable false discovery rate (FDR), to identify 

differentially expressed features with statistical significance. From this point on, we will simply refer to features as genes. While 

the use of RNA-Seq for quantifying gene expression is relatively straightforward to conceptualize, RNA-Seq experiments have 

considerable computational and statistical challenges. The massive quantities of short reads require ultra fast alignment programs 

that adequately address memory demands. The volume of data is also of concern if the end user desires systematic storage and 

management, as well as integration of data into third party software for additional analyses. Importantly, the combination of a 

large number of comparisons and small sample sizes causes more concern than usual about the power of the statistical test. We 

describe DESeq2, a simple pipeline with the appropriate statistical tests for studying genome-wide changes in gene expression. It 

is modular and flexible to allow the end user to use different alignment programs, easily change parameters, and use different 

statistical tests for analysis of differential gene expression and enriched gene ontology (GO) terms. 

2. HIGH THROUGHPUT SEQUENCING  

In earlier period, hybridization-based microarrays approach was mostly used for gene expression profiling and DE analysis. These 

technologies consist in an array of probes, whose sequences represent particular regions of the genes to be monitored. The sample 

under investigation is washed over the array, and RNAs are free to hybridize to the probes with a complementary sequence. A 
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fluorescent is used to label the RNAs, so that image acquisition of the whole array enables the quantification of the expressed 

genes. Although widely these techniques have several limitations such as reliance on prior knowledge about the genome for probe 

design; possibility to monitor only some portions of the known genes and not the actual sequences of all transcribed RNAs; 

imperfect hybridization between quasi-complementary sequences; limited dynamic range due to background noise and signal 

saturation; need for normalization to compare data from different arrays. Lately, high-throughput sequencing technology has 

brought a revolution in differential gene expression analysis with several key advantages such as reconstruction of known and 

novel transcripts at single-base level; broad dynamic range, not limited by signal saturation; high levels of reproducibility. 

Sequencing has progressed far beyond the analysis of DNA sequences, and is now routinely used to analyze other biological 

components such as RNA and protein, as well as their interaction in complex networks. RNA-seq leverages on the sequencing 

framework to overcome the pure quantification task, enabling new applications, such as transcriptome profiling of non-model 

organisms, novel transcripts discovery, investigation of RNA editing and quantification of allele-specific gene expression. 

Currently, HT sequencing has been widely applied in multi-level application including sequence reading appliances e.g. Whole 

Genome Re-sequencing, Targeted Specific Sequencing, De-novo assembly as well as comparable counting based applications 

such as RNA-seq, CAGE, GRO-Seq, NET-seq, ChIP-seq, Ribo-Seq. In case of DE analysis, we mainly depend on HT seq 

counting based applications ChIP-Seq, RNA-seq. Typically, these reads are assigned to a class based on their mapping to a 

common region of the target genome, where each class represents a target transcript, in the case of RNA-Seq, or a binding region, 

in the case of ChIP-Seq. An important summary statistic is the number of reads in a class; for RNA-Seq, this read count can differ 

in biological conditions.  

 

3. DIFFERENTIAL GENE EXPRESSION USING RNA SEQ 

Differential expression is the assessment of differences in read counts of genes between two or more experimental conditions. 

Genes are differentially expressed if this difference is statistically significant. There are two samples from the same patient. 

One sample is from kidney tumor biopsy. The other sample is a biopsy from the patient's other kidney, which seems to be 

perfectly healthy tissue. Theoretically; we would expect that the two samples will have different amounts of certain  messenger 

RNA transcripts. It would be interesting to see which transcripts from the tumor are being synthesized at a significantly higher or 

lower number in the tumor tissue compared to that in the healthy tissue. Nevertheless, differential Expression in RNAseq differs 

from Microarray and other HT Data. Microarray DE data are based on numerical intensity values while Quantitative Metabolome 

analysis is based on area of the peak generated by each metabolite in the sample. RNAseq is based on sequence read count 

distributions and provides richer information i.e. increased specificity and sensitivity for enhanced detection of differential gene 

expression. The transcriptome is the whole set of RNAs transcribed from the genes of a cell. Although RNAs are not the final 

products of the transcription–translation process, the study of gene expression and differential gene expression can unveil 

important aspects about the cell states under investigation. HT sequencing established RNA-seq as the preferred methodology for 

the study of gene expression. The RNAs in the sample of interest are initially fragmented and reverse-transcribed into 

complementary DNAs (cDNAs). The obtained cDNAs are then amplified and subjected to HT Seq. The millions of short reads 

generated can then be mapped on a reference genome and the number of reads aligned to each gene, called „counts‟, gives a digital 

measure of gene expression levels

 

Figure1.1 DE analysis procedure. 

Despite all these newsworthy features and apparently easy scheme of data analysis, RNA-seq studies produce large and complex 

data sets, whose interpretation is not straightforward. Nevertheless, if a well-annotated reference genome or transcriptome is 
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available and if the aim of an RNA-seq study is the detection of DE genes, a basic data processing pipeline consists in read 

mapping, counts computation, counts normalization and detection of differentially expressed genes (Figure 1). More sophisticated 

pipelines can be tailored on the specific need by considering the addition of pre- and post-processing modules to be used before 

and after read mapping. 

4. TRADITIONAL FOLD CHANGE VS STATISTICAL PARAMETRIC TEST IN RNA SEQ 

Fundamental to the task of DE gene expression data analysis is the need to identify genes whose patterns of expression differ 

according to phenotype or experimental condition. Gene expression measurements on different genes are not generally 

autonomous. Meaningful comparisons between samples can be made by considering the joint distribution of specific sets of genes 

considering their specific interactions and transcriptional controls. To ease the high dimensional exploration of differential gene 

expression taking into account their relationships, we can start with a gene-by-gene approach, ignoring the dependencies between 

genes. Fold-change criterion based analysis may give a hand but not allow the assessment of significance of expression 

differences in the presence of biological and experimental variation, which may differ from gene to gene. Let's say there are 50 

read counts in control and 100 read counts in treatment for gene A. This means gene A is expressing twice in treatment as 

compared to control (100 divided by 50 =2) or fold change is 2. This works well for over expressed genes as the number directly 

corresponds to how many times a gene is over expressed. But when it is other way round (i.e, treatment 50, control 100), the value 

of fold change will be 0.5 (all under expressed genes will have values between 0 to 1, while over expressed genes will have values 

from 1 to infinity). To make this leveled, we use log2 for expressing the fold change. I.e, log2 of 2 is 1 and log2 of 0.5 is -1. Fold 

change can also be computed in unsupervised fashion, where we don't know the class labels (like case-control or type1-type2) of 

the samples. In that setting we can use mean expression of a gene as the base value and compute the fold change for that gene in 

each sample.  

Calculating fold change directly can be misleading. Low counts can appear to have high fold changes while large counts are less 

sensitive. This is the main reason for using statistical tests to assess differential expression. Generally, one might look at various 

properties of the distributions of a gene‟s expression levels under different conditions, though most often location parameters of 

these distributions, such as the mean or the median, are considered. One may distinguish between parametric tests, such as the t-

test, and non-parametric tests, such as the Mann-Whitney test or permutation tests. Parametric tests usually have a higher power if 

the underlying model assumptions, such as normality in the case of the t test, are at least approximately fulfilled. 

Data analyzing scale is much important for performing statistical analysis of DE data. Logarithmic scale may be used for 

symmetrically normalizing the distribution of replicated measurements per gene. A variance stabilizing transformation derived 

from an error model is advantageous for statistical tests that rely on variance homogeneity due to diminishing differences in 

variance between experimental conditions. Nevertheless, genetic variance due to specific biological reasons will remain 

untouched. One or two group t-test comparisons, multiple group ANOVA, and more general trend tests are all instances of linear 

models that are frequently used for assessing differential gene expression.  

The approach of conducting a statistical test for each gene is popular, largely because it is relatively straightforward and a 

standard catalog of methods can be applied. However, a large number of hypothesis test needs to be carried out leading to a large 

number of falsely significant results. Multiple testing procedures allow one to assess the overall significance of the results of a 

family of hypothesis tests. They focus on specificity by controlling type I (false positive) error rates such as the family-wise error 

rate or the false discovery rate. Still, multiple hypothesis testing remains a problem, because an increase in specificity, as provided 

by p-value adjustment methods, is coupled with a loss of sensitivity, that is, a reduced chance of detecting true positives. The 

number of hypotheses to be tested can often be reasonably reduced by non-specific filtering procedures, discarding, e.g., genes 

with consistently low intensity values or low variance across the samples. This is especially relevant in the case of genome-wide 

arrays, as often only a minority of all genes will be expressed at all in the cell type under consideration. 

Many DE experiments involve only few replicates per condition, which makes it difficult to estimate the gene-specific variances 

that are used, e.g., in the t-test. Different methods have been developed to exploit the variance information provided by the data of 

all genes; in the limma package, an Empirical Bayes approach is implemented that employs a global variance estimator,    
  is 

computed on the basis of all genes variances. The resulting test statistic is a moderated t-statistic, where instead of the single-gene 

estimated variances    
 , a weighted average of    

  and    
  is used. Under certain distributional assumptions, this test statistic 

can be shown to follow a t-distribution under the null hypothesis with the degrees of freedom depending on the data. 
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5. RNA-SEQ ANALYSIS PROCEDURE 

 5.1. Read Mapping 

The first computational step of the RNA-seq data analysis pipeline is read mapping: reads are aligned to a reference genome or 

transcriptome by identifying gene regions that match read sequences. So far, many alignment tools have been proposed. In all 

cases, the mapping process starts by building an index of either the reference genome or the reads, which is then used to quickly 

retrieve the set of positions in the reference sequence where the reads are more likely to align. Once this subset of possible 

mapping locations has been identified, alignment is performed in these candidate regions with slower and more sensitive 

algorithms. The available mapping tools can be divided into two main categories based on the methodology used to build the 

index: hash tables or Burrows–Wheeler transform (BWT). 

The hash table is a common data structure for indexing complex data sets so to facilitate rapid string searching. Mapping tools can 

build hash tables either on the set of input reads or on the reference, considering all subsequences of a certain length k. (k-mers) 

contained in the considered sequences. In the hash table, the key of each entry is a k-mer, while the value is the list of all positions 

in the reference where the k-mer was found. The two solutions have different advantages and drawbacks. For instance, building 

hash tables of the reference requires constant memory, for a given reference and parameter set, regardless of the size of the input 

read data. Conversely, building hash tables of reads typically requires variable but smaller memory footprint, depending on the 

number and complexity of the read set. However, this latter solution may require longer processing time to scan the entire 

reference sequence when searching for hits, even if the input read set is small, and is not suited for parallelization. BWT is a 

reversible string rearrangement that encodes the genome into a more compact representation, leveraging on redundancy of 

repeated subsequences. Methods based on BWT create an index of the BWT, called „FM-index‟, that can be used to perform fast 

string searching in a reduced domain of available subsequences, without scanning the whole genome. The combination of BWT 

and FM-index ensures both limited memory and space occupancy, but requires longer computational time for index construction 

than hash-based methods. However, since the index has to be constructed only once for a given reference and pre-computed 

indexes for several model genomes are already available, this aspect has minimum impact on the total computational time. 

Conversely, the strategy used to extend the first partial high-quality hits identified thanks to hash- or BWT-based indexes into full-

read alignments has a major impact on algorithm performance. Usually, hash-based algorithms implement a „seed-and-extend‟ 

approach leveraging on a bounded version of the Smith–Waterman (SW) algorithm. BWT-based solutions sample substrings of 

the reference using the FM-index and then accommodate inexact matches by tolerating some mismatches, up to a certain 

threshold. BWT implementations, which were developed for short (<50 nt) read alignment, impose very stringent constraints on 

inexact matches, which make them much faster than hash-based approaches, but less sensitive. As NGS technologies are 

producing increasingly longer reads (>100 nt), mapping tools are implementing hybrid solutions, which exploit the efficiency of 

BWT and „FM-index‟ for seeding and then perform alignment extension with SW-like algorithms.  

Unlike tools for genome-sequencing data mapping, algorithms developed for RNA-seq may have to handle „spliced reads‟. 

Splicing is a post-transcriptional modification underwent by most of RNAs transcribed in eukaryotic organisms. During splicing, 

non-coding regions (introns) are removed and coding sequences (exons) are concatenated together. Although the order of exons is 

always preserved, some exons can be removed along with introns, giving rise to different RNAs. This process, called „alternative 

splicing‟, enables to produce different protein isoforms starting from the same gene. Thus, RNAs in eukaryotes can give rise to 

spliced reads that span exon–exon junctions and that cannot be directly mapped onto the genome, where exons are separated by 

introns. To map these spliced reads back to the genome, algorithms for RNA-seq data analysis must handle spliced alignment 

(Figure 2A). Generally, simple gapped alignment is not sufficient to account for introns because they can span a wide range of 

lengths. To align spliced reads, many tools implement a two-step procedure: first, reads are mapped to the genome and used to 

identify putative exons; then, candidate exons are used to build all possible exon–exon junctions, which are considered for 

mapping the spliced reads that failed to map in the first step.  

 

Figure 2: Read mapping foe DE analysis. 

http://doi.org/10.31695/IJASRE.2018.32720


 

International Journal of  

Advances in Scientific Research and Engineering (ijasre) 

 

E-ISSN : 2454-8006 

DOI: http://doi.org/10.31695/IJASRE.2018.32720 

 

Volume 4,  Issue 7 

July - 2018 

 

www.ijasre.net                Page 101 

RNA-seq read mapping undoubtedly possesss some issues such as spliced-reads mapping in correspondence of exon–exon 

junctions, length bias, differences in library size composition. To be correctly mapped on the genome, where exons are separated 

by introns, spliced reads must be broken into shorter strings. Longer genes are more likely to generate more reads than shorter 

ones with similar expression levels. A count data set where samples A and B have the same number of reads (dB = dA), but 

different library compositions. The first 99 genes have the same counts in each sample (40 and 50 in sample A and B, 

respectively). In sample B, the reads available for most of the genes are „consumed‟ by gene 100, which has very high expression. 

Library sizes can be computed excluding gene 100, to reflect the real sequencing state available for most of the genes in sample B 

(dB = 0.8dA). 

    5.2. Digitally Counting Gene Expression  

After mapping, the reads aligned to each exon coding unit, transcript or gene expression level is estimated by computing counts. 

Counts computation considers the total number of reads overlapping the exons of a gene. Another strategy regards the whole 

length of a gene with the insertion of read counts from introns because in case of some well-annotated organisms, a fraction of 

reads may map outside the boundaries of known exons. After mapping, spliced reads can be used to model the abundance of 

different splicing isoforms of a gene. Genes with overlapping sequence can be dealt with the „Union-Intersection gene‟ model 

considering the union of the exonic bases that do not overlap with the exons of other genes. We mainly focus on flexible 

„maxcounts‟ approach which does not compute the sum of aligned reads, but estimates the expression level of each exon or single-

isoform transcript as the maximum read coverage reached along its sequence. Combination „maxcounts‟ at exon level with a 

measure of gene or transcript expression can be used for RNA-seq studies in eukaryotes. Gene expression from RNA-seq data is 

typically implemented through two computational steps: alignment of reads to a reference genome or transcriptome, and 

subsequent estimation of gene and isoform abundances based on aligned reads. The reads from RNA-Seq are generally much 

shorter than the transcripts from which they are sampled. As a consequence, in the presence of transcripts with similar sequences, 

it is not always possible to uniquely assign short reads to a specific gene.  

NGS data arising from repeated regions have to be handled properly in order not to bias the results. A non-negligible fraction of 

RNA-seq reads are „multireads‟ mapping with comparable fidelity on multiple positions of the reference. The fraction of 

multireads over total mapped reads depends on transcriptome complexity and read length, varying from 10 to >50%. Gene 

multireads can be handled by simply discarding them to estimate gene expression considering only uniquely mapping reads. 

Multireads filtering is a commonly used approach in the analysis of RNA-seq due to the chance of assigning multireads to the 

wrong genomic location. RNA-seq studies aims at reconstructing transcripts sequences and quantifying relative abundances. Ji et 

al. propose a sophisticated method called BM-Map to consider the mismatch profiles between the unique reads and the sequence 

of the genomic locations they are aligned and calculate the probability of mapping each multiread to a genomic location 

considering three sources of information: the sequencing error profile, the likelihood of true polymorphisms and the expression 

level of competing genomic locations. The mismatch profile is also taken into consideration by MMSEQ, which estimates both 

isoform expression and allelic imbalance, namely expression differences between different alleles of the same gene or isoform. 

More recent methods, such as RSEM, define a probabilistic model of RNA-Seq data and calculate maximum likelihood estimates 

of isoform expression levels using the Expectation-Maximization algorithm.  

    5.3. Preparing Count Matrices 

The count-based statistical methods, such as DESeq2, edgeR, limma with the voom method, DSS, EBSeq and baySeq, expect 

input data from RNA-seq or HT-seq experiment as a matrix of integer values. The value in the i-th row and the j-th column of the 

matrix tells how many reads (or fragments, for paired-end RNA-seq) have been assigned to gene i in sample. In statistical 

modeling, matrix values should be counts of sequencing reads/fragments as only counts allow precise measurement. Pre-

normalized counts should not be provided because the statistical model is the most powerful when applied to un-normalized 

counts, and is designed for diffrent library sizes. This involves several steps. 

Counting RNA-seq fragments employs a newer and faster alternative pipeline to use transcript abundance quantification methods 

such as Salmon, Sailfish, kallisto, or RSEM, to estimate abundances without aligning reads, followed by the tximport package for 

assembling estimated count and offset matrices for using Bioconductor DE packages. Salmon software can be used for 

quantifying transcript abundance and using the steps in the tximport vignette one can build DESeqDataSet. The advantages of 

using the transcript abundance quantifiers in conjunction with tximport to produce gene-level count matrices and normalizing 

offsets, are: this approach corrects for any potential changes in gene length across samples (e.g. from differential isoform usage); 

some of these methods are substantially faster and require less memory and disk usage compared to alignment-based methods; and 

it is possible to avoid discarding those fragments that can align to multiple genes with homologous sequence. Transcript 

abundance quantifiers skip the generation of large files which store read alignments, instead producing smaller files which store 

estimated abundances, counts, and effective lengths per transcript.  
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Aligning reads to a reference genome starts with the computational analysis of an RNA-seq FASTQ files containing nt-seq of 

each read and a quality score at each position. These reads must first be aligned to a reference genome or transcriptome, or the 

abundances and estimated counts per transcript can be estimated without alignment using packages. In either case, it is important 

to know if the sequencing experiment was single-end or paired-end, as the alignment software will require the user to specify both 

FASTQ files for a paired-end experiment. The output of this alignment step is commonly stored in a file format called 

SAM/BAM. A number of software programs exist to align reads to a reference genome. We can use the STAR read aligner to 

align the reads for our experiment to the Ensembl reference genome. A file‟s each line will contain an identifier for each 

experiment, and we should have all the FASTQ files in a subdirectory. If you have downloaded the FASTQ files from the 

Sequence Read Archive, the identifiers would be SRA run IDs, e.g. SRR1039520. One should have two files for a paired-end 

experiment for each ID, fastq/SRR1039520_1.fastq1 and fastq/SRR1039520_2.fastq, which gives the first and second read for the 

paired-end fragments. If one has performed a single-end experiment, one would only have one file per ID. We have also created a 

subdirectory, aligned, where STAR will output its alignment files. SAMtools can be used to generate BAM files. The BAM files 

for a number of sequencing runs can then be used to generate count matrices. 

 

Figure 3: Steps in counting matrix preparation. 

After successful alignment we have to locate the alignment files. The specific package will contain the count matrix and files with 

a small subset of the total number of reads in the experiment because the full alignment files are large (a few gigabytes each) 

which may take between 10-30 minutes to count the fragments for each sample. We will use these files to construct count matrix 

from BAM files. Afterwards, we will load the full count matrix corresponding to all samples and continue the analysis with that 

full matrix. The R function system.file can be used to find out where on computer the files from a package have been installed. In 

the particular directory, we may find the BAM files. Typically, we have a table with detailed information for each of our samples 

that links samples to the associated FASTQ and BAM files. For project help, one can create such a comma-separated value (CSV) 

file using a text editor or spreadsheet software such as Excel and load such a CSV. Once reads have been aligned, there are a 

number of tools that can be used to count the number of reads/fragments that can be assigned to genomic features for each sample. 

These often take as input SAM/BAM alignment files and a file specifying the genomic features, e.g. a GFF3 or GTF file 

specifying the gene models. 
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DESeq2 has several import functions which can be used generate count matrices such as summarize Overlaps,  feature 

Counts, tximport, htseq-count. 

Function Package Framework Output Deseq2 Input Function 

Summarize overlaps Genomical ignments R/Bioconductor Summarized experiment Deseq dataset 

Feature counts Rsubread R/Bioconductor Matrix Deseq dataset frommatrix 

Txim port Tximport R/Bioconductor List Of Matrices Deseq dataset fromtximport 

Htseq-Count Htseq Python Files Deseq dataset tfromhtseq 

Among these we can easily proceed using summarizeOverlaps. Via the Run column in the sample table, we construct the full 

paths to the files we want to perform the counting operation on. We indicate in Bioconductor that these files are BAM files using 

the BamFileList function from the Rsamtools package that provides an R interface to BAM files. The names of the genomic 

features in the annotation should be consistent with the names of the reference used for read alignment. Otherwise, the scripts 

might fail to count any reads to features due to the mismatching names.  

Gene models should be built after generating count matrix. The model will be used for counting reads/fragments. We can read the 

gene model from an Ensembl GTF file using makeTxDbFromGFF from the GenomicFeatures package. GTF files can be 

downloaded from Ensembl‟s FTP site or other gene model repositories. A TxDb object is a database that can be used to generate a 

variety of range-based objects, such as exons, transcripts, and genes. We want to make a list of exons grouped by gene for 

counting read/fragments. There are other options for constructing a TxDb. For the known genes track from the UCSC Genome 

Browser, one can use the pre-built Transcript DataBase. If the annotation file is accessible from AnnotationHub, a pre-scanned 

GTF file can be imported using makeTxDbFromGRanges. 

After all these preparations, the actual read counting is easy. The function summarizeOverlaps from the GenomicAlignments 

package can do this. This produces a Summarized Experiment object that contains a variety of information about the experiment, 

and will be described in more detail below. If it is desired to perform counting using multiple cores, one can use the register and 

MulticoreParam or SnowParam functions from the BiocParallel package before the counting call. We specify a number of 

arguments besides the features and the reads. The mode argument describes what kind of read overlaps will be counted. 

Fragments will be counted only once to each gene, even if they overlap multiple exons of a gene which may themselves be 

overlapping. In order to produce correct counts, it is important to know if the RNA-seq experiment was strand-specific or not. 

However, certain strand-specific protocols could have the reads align only to the opposite strand of the genes. The user must 

check if the experiment was strand-specific and if so, whether the reads should align to the forward or reverse strand of the genes. 

For various counting/quantifying tools, one specifies counting on the forward or reverse strand in different ways, although this 

task is currently easiest with htseq-count, featureCounts, or the transcript abundance quantifiers mentioned previously. It is always 

a good idea to check the column sums of the count matrix to make sure these totals match the expected of the number of reads or 

fragments aligning to genes. Additionally, one can visually check the read alignments using a genome visualization tool. 

The main component parts of a Summarized Experiment object are assay which contains the matrix of counts, rowRanges 

contains information about the genomic ranges and colData contains information about the samples. A single “counts” matrix that 

contains the fragment counts for each gene and sample is stored in assay. The rowRanges is the GRangesList used for counting 

and one GRanges of exons is created for each row of the count matrix. The component parts of the SummarizedExperiment are 

accessed with an R function of the same name, rowRanges and colData. We can still investigate the resulting 

SummarizedExperiment by looking at the counts in the assay slot, the phenotypic data about the samples in colData slot, and the 

data about the genes in the rowRanges slot. The rowRanges, when printed, only shows the first GRanges and contains metadata 

about the construction of the gene model in the metadata slot. The colData slot, so far empty, should contain all the metadata. 

Because we used a column of sampleTable to produce the bamfiles vector, we know the columns of se are in the same order as the 

rows of sampleTable. We can assign the sample Table as the colData of the summarized experiment, by converting it into a 

DataFrame and using the assignment function. 

    5.4. Count Normalization and DE Analysis 

After we have counted the fragments which overlap the genes in the gene model, we come to branching point where we could use 

a variety of Bioconductor packages for exploration and differential expression of the count data, including edgeR, limma with the 

voom method, DSS, EBSeq and baySeq. Compared performance of different statistical methods for RNA-seq using a large 

number of biological replicates can help users to decide which tools make sense to use, and how many biological replicates are 
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necessary to obtain certain sensitivity. The Summarized Experiment object is all we need to create the data object used by 

DESeq2. 

     5.4.1. The DE-Seq Dataset Object, Sample information and the Design Formula  

Software packages has general data classes (such as the Summarized Experiment) that can be used to move data between 

packages and use a custom class for storing data to ensure the provision of needed data slots according to the requirements. 

Summarized Experiment automatically subsets or reorders the associated rowRanges and colData to prevent accidental sample 

swaps. In DESeq2, the custom class is called DESeq DataSet which is built on top of the Summarized Experiment class, and easy 

to convert this class objects into DESeq DataSet objects which has an associated design formula. The experimental design is 

specified at the beginning of the analysis, as it will inform many of the DESeq2 functions how to treat the samples in the analysis. 

The design formula tells which columns in the sample information table specify the experimental design and how these factors 

should be used in the analysis. The simplest design formula for differential expression would be the condition in that specifies 

which of two or more groups the samples belongs to.  

 

Figure 4: After counting, normalization and DE analysis steps. 

Software packages has general data classes (such as the SummarizedExperiment) that can be used to move data between packages 

and use a custom class for storing data to ensure the provision of needed data slots according to the requirements. 

SummarizedExperiment automatically subsets or reorders the associated rowRanges and colData to prevent accidental sample 

swaps. In DESeq2, the custom class is called DESeqDataSet which is built on top of the SummarizedExperiment class, and easy 

to convert this class objects into DESeqDataSet objects which has an associated design formula. The experimental design is 

specified at the beginning of the analysis, as it will inform many of the DESeq2 functions how to treat the samples in the analysis. 

The design formula tells which columns in the sample information table specify the experimental design and how these factors 

should be used in the analysis. The simplest design formula for differential expression would be the condition in that specifies 

which of two or more groups the samples belongs to.  

The construction of the DESeq DataSet from a prepared Summarized Experiment from the publicly available sequencing data 

files. We can quickly check the millions of fragments that uniquely aligned to the genes. After constructing a Summarized 

Experiment, we need to make sure that the object contains all the necessary information about the samples. When working we will 

have to add the pertinent sample / phenotypic information using comma-separated value (CSV) or tab-separated value (TSV) file 

exported from an Excel spreadsheet at this stage. Once we have our fully annotated Summarized Experiment object, we can 

construct a DESeq DataSet object from it that will then form the starting point of the analysis. Provided that we only have a count 

matrix and a table of sample information, we will show how can build a DESeq DataSet but we can skip the step if we have 

prepared a Summarized Experiment. The count matrix would either be read in from a file or perhaps generated by an R function 

like feature Counts from the. The information in a Summarized Experiment object can be accessed with accessor functions. In 

count matrix, each row represents an Ensembl gene, each column a sequenced RNA library, and the values give the raw numbers 

of fragments that were uniquely assigned to the respective gene in each library. We should prepare our data object in a form that is 

suitable for analysis count data table with the fragment counts and coldata table with information about the samples. 
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5.4.2. Exploratory Analysis and Visualization 

Transformations of the counts are used to visually explore sample relationships. Original raw counts should be used for statistical 

testing because the methods rely on original count data not scaled or transformed. Pre-filtering the dataset means DESeqDataSet 

count matrix must be reduced to increase the speed of our functions by removing the rows that have no or nearly no information 

about the amount of gene expression. So, we should apply the most minimal filtering rule and additional weighting/filtering can 

improve power at a later step in the workflow. Clustering and principal components analysis (PCA), work best for data that 

generally has the same range of variance at different ranges of the mean values. When the expected amount of variance is 

approximately the same across different mean values, the data is said to be homoskedastic. For RNA-seq counts, however, the 

expected variance grows with the mean. If one performs PCA directly on a matrix of counts or normalized counts by taking 

logarithm of the normalized count values plus a pseudocount of 1; the genes with the very lowest counts will contribute a great 

deal of noise to the resulting plot, because taking the logarithm of small counts actually inflates their variance. The low count 

genes with low signal-to-noise ratio will overly contribute to sample-sample distances and PCA plots. 

A useful first step in an RNA-seq analysis is often to assess overall similarity between samples: R function dist can be used to 

calculate the Euclidean distance between samples. To ensure we have a roughly equal contribution from all genes, we use it on the 

rlog-transformed data. We need to transpose the matrix of values using t, because the dist function expects the different samples to 

be rows of its argument, and different genes to be columns. We visualize the distances in a heatmap using the function pheatmap 

from the pheatmap package. In order to plot the sample distance matrix with the rows/columns arranged by the distances in our 

distance matrix, we manually provide sampleDists to the clustering_distance argument of the pheatmap function. Another option 

for calculating sample distances is to use the Poisson Distance and it takes the original count matrix (not normalized) with samples 

as rows instead of columns, so we need to transpose the counts. 

 

Figure 1 

DESeq2 offers two transformations for count data to stabilize the variance across the mean: the regularized-logarithm 

transformation or rlog, and the variance stabilizing transformation (VST) for negative binomial data with a dispersion-mean. For 

genes with high counts, the rlog and VST will give similar result to the ordinary log2 fold transformation of normalized counts. 

The rlog-transformed or VST data then becomes approximately homoscedastic for lower counts, and can be used directly for 

computing distances between samples, making PCA plots, or as input to downstream methods which perform best with 

homoskedastic data. The rlog tends to work well on small datasets (n < 30), sometimes outperforming the VST when there is a 

large range of sequencing depth across samples. The VST is much faster to compute and is less sensitive to high count outliers 

than the rlog and recommended for large dataset .  

A useful first step in an RNA-seq analysis is often to assess overall similarity between samples by using R function dist to 

calculate the Euclidean distance between samples. To ensure we have a roughly equal contribution from all genes, we use it on the 

rlog-transformed data. We need to transpose the matrix of values using t, because the dist function expects the different samples to 

be rows of its argument, and different dimensions to be columns. Besides heatmap, principal components analysis (PCA) can be 

used to visualize sample-to-sample distances. In this ordination method, the data points are projected onto the 2D plane such that 

they spread out in the two directions that explain most of the differences. The x-axis is the direction that separates the data points 

the most. The values of the samples in this direction are written PC1. The y-axis is a direction (it must be orthogonal to the first 

direction) that separates the data the second most. The values of the samples in this direction are written PC2. The percent of the 

total variance that is contained in the direction is printed in the axis label. These percentages do not add to 100%, because there 

are more dimensions that contain the remaining variance. 
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Figure 2 PCA Plot for showing distance                                   Figure 3: MDS plot using poissions distance 

Function plotPCA is included in from DESeq2 or it can be used from scratch using the ggplot2 package by asking the plotPCA 

function to return the data used for plotting rather than building the plot. From the PCA plot, we see that the differences between 

features are considerable, and that‟s why it will be important to account for this in differential testing. Another plot, very similar to 

the PCA plot, can be made using the multidimensional scaling (MDS) function in base R. This is useful when we don‟t have a 

matrix of data, but only a matrix of distances. Here we compute the MDS for the distances calculated from the rlog transformed 

counts and plot these.  

 5.5 Differential expression analysis 

Running the differential expression pipeline starts from DESeq DataSet raw counts with a single call to the function DESeq that 

prints out a message for the various steps it performs such as the estimation of size factors, the estimation of dispersion values for 

each gene, and fitting a generalized linear model. DESeq DataSet contains all the fitted parameters within it and we can extract 

out results tables of interest from this object. Calling results without any arguments will extract the estimated log2 fold changes 

and p values in the design formula. log2FoldChange is the effect size estimate and tell us how much the gene‟s expression seems 

in comparison to samples. This value is reported on a logarithmic scale to base 2 but has an uncertainty associated called standard 

error estimate for the log2 fold change. The purpose of a test for differential expression is to test whether the data provides 

sufficient evidence to conclude that this value is really different from zero. DESeq2 performs for each gene a hypothesis test to 

see whether evidence is sufficient to decide against the null hypothesis that there is zero effect of the treatment on the gene and 

that the observed difference between treatment and control was merely caused by experimental variability. As usual in statistics, 

the result of this test is reported as a p value, and it is found in the column  p value that indicates the probability that a fold change 

as strong as the observed one, or even stronger, would be seen under the situation described by the null hypothesis. There are two 

ways to be stricter about which set of genes are considered significant by lowering the false discovery rate threshold, raise the 

log2 fold change threshold from 0. Sometimes a subset of the p values in result will be “not available” reporting that all counts for 

this gene were zero, and hence no test was applied. In addition, p values can be assigned NA if the gene was excluded from 

analysis because it contained an extreme count outlier.  

Results for a comparison of any two levels of a variable can be extracted using the contrast argument to results. The user should 

specify three values: the name of the variable, the name of the level for the numerator, and the name of the level for the 

denominator. There are additional ways to build results tables for certain comparisons after running DESeq once. If results for an 

interaction term are desired, the name argument of results should be used 

HT-seq, avoids using direct use of p values as evidence against the null, but to correct for multiple testing. Assuming the null 

hypothesis is true for all genes, with the definition of the p value, we expect up to 5% of the genes to have a p value below 0.05. 

DESeq2 uses the Benjamini-Hochberg (BH) adjustment as implemented in the base R p.adjust function; in brief, this method 

calculates for each gene an adjusted p value that answers the following question: if one called significant all genes with an 

adjusted p value less than or equal to this gene‟s adjusted p value threshold, what would be the fraction of false positives (the false 

discovery rate, FDR) among them. The FDR is a useful statistic for many high-throughput experiments, as we are often interested 

in reporting or focusing on a set of interesting genes, and we would like to put an upper bound on the percent of false positives in 

this set. 
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5.4.3. Exploratory Analysis and Visualization 

Running the differential expression pipeline starts from DESeq DataSet raw counts with a single call to the function DESeq that 

prints out a message for the various steps it performs such as the estimation of size factors, the estimation of dispersion values for 

each gene, and fitting a generalized linear model. DESeq DataSet contains all the fitted parameters within it and we can extract 

out results tables of interest from this object. Calling results without any arguments will extract the estimated log2 fold changes 

and p values in the design formula. log2 Fold Change is the effect size estimate and tell us how much the gene‟s expression seems 

in comparison to samples. This value is reported on a logarithmic scale to base 2 but has an uncertainty associated called standard 

error estimate for the log2 fold change. The purpose of a test for differential expression is to test whether the data provides 

sufficient evidence to conclude that this value is really different from zero. DESeq2 performs for each gene a hypothesis test to 

see whether evidence is sufficient to decide against the null hypothesis that there is zero effect of the treatment on the gene and 

that the observed difference between treatment and control was merely caused by experimental variability. As usual in statistics, 

the result of this test is reported as a p value, and it is found in the column p value that indicates the probability that a fold change 

as strong as the observed one, or even stronger, would be seen under the situation described by the null hypothesis. There are two 

ways to be stricter about which set of genes are considered significant by lowering the false discovery rate threshold, raise the 

log2 fold change threshold from 0. Sometimes a subset of the p values in result will be “not available” reporting that all counts for 

this gene were zero, and hence no test was applied. In addition, p values can be assigned NA if the gene was excluded from 

analysis because it contained an extreme count outlier.  

Results for a comparison of any two levels of a variable can be extracted using the contrast argument to results. The user should 

specify three values: the name of the variable, the name of the level for the numerator, and the name of the level for the 

denominator. There are additional ways to build results tables for certain comparisons after running DESeq once. If results for an 

interaction term are desired, the name argument of results should be used 

HT-seq, avoids using direct use of p values as evidence against the null, but to correct for multiple testing. Assuming the null 

hypothesis is true for all genes, with the definition of the p value, we expect up to 5% of the genes to have a p value below 0.05. 

DESeq2 uses the Benjamini-Hochberg (BH) adjustment as implemented in the base R p.adjust function; in brief, this method 

calculates for each gene an adjusted p value that answers the following question: if one called significant all genes with an 

adjusted p value less than or equal to this gene‟s adjusted p value threshold, what would be the fraction of false positives (the false 

discovery rate, FDR) among them. The FDR is a useful statistic for many high-throughput experiments, as we are often interested 

in reporting or focusing on a set of interesting genes, and we would like to put an upper bound on the percent of false positives in 

this set. 

5.4.3. Plotting results 

Assuming the null Counts plot is a quick way to visualize the counts for a particular gene and it uses the plotCounts function that 

takes as arguments the DESeqDataSet, a gene name, and the group over which to plot the counts. We can also make custom plots 

using the ggplot function from the ggplot2 package. 
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Figure 4.  Count Plot                                                              MA Plot 

Besides, MA-plot mean-difference plot, or a Bland-Altman plot provides a useful overview for the comparisons of interest, across 

all genes. On the y-axis, the “M” stands for “minus” – subtraction of log values is equivalent to the log of the ratio – and on the x-

axis, the “A” stands for “average”. Another useful diagnostic plot is the histogram of the p values which is best formed by 

excluding genes with very small counts, which otherwise generate spikes in the histogram. 

In the sample distance heatmap, the dendrogram at the side shows us a hierarchical clustering of the samples. Such a clustering 

can also be performed for the genes. Since the clustering is only relevant for genes that actually carry a signal, one usually would 

only cluster a subset of the most highly variable genes. The heatmap becomes more interesting if we do not look at absolute 

expression strength but rather at the amount by which each gene deviates in a specific sample from the gene‟s average across all 

samples. Hence, we center each genes‟ values across samples, and plot a heatmap.  

              

                                                  Figure 5: Gene Clustering                                        Figure 6: Independent Flitering  

Such a clustering can The MA plot highlights an important property of RNA-seq data. For weakly expressed genes, we have no 

chance of seeing differential expression, because the low read counts suffer from such high Poisson noise that any biological 

effect is drowned in the uncertainties from the sampling at a low rate. We can also show this by examining the ratio of small p 

values (say, less than 0.05) for genes binned by mean normalized count. We will use the results table subjected to the threshold to 

show what this looks like in a case when there are few tests with small p value. The ratio of small p values for genes binned by 

mean normalized count. The p values are from a test of log2 fold change greater than 1 or less than -1. This plot demonstrates that 

genes with very low mean count have little or no power, and are best excluded from testing. At first sight, there may seem to be 

little benefit in filtering out these genes. After all, the test found them to be non-significant anyway. However, these genes have an 

influence on the multiple testing adjustment, whose performance improves if such genes are removed. By removing the low count 

genes from the input to the FDR procedure, we can find more genes to be significant among those that we keep, and so improved 

the power of our test. This approach is known as independent filtering. The DESeq2 software automatically performs independent 

filtering that maximizes the number of genes with adjusted p value less than a critical value 0.1. Filtering is permissible only if the 

statistic that we filter on is independent of the actual test statistic, the p value under the null hypothesis. Otherwise, the filtering 

would invalidate the test and consequently the assumptions of the BH procedure. The independent filtering software used inside 

DESeq2 comes from the genefilter package 
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5.4.4. Annotating and exporting results 

Result table so far only contains the Ensembl gene IDs, but alternative gene names may be more informative for interpretation. 

Bioconductor‟s annotation packages help with mapping various ID schemes to each other. We load the AnnotationDbi package 

and the annotation package org.Hs.eg.db. We can use the mapIds function to add individual columns to our results table. We can 

easily save the results table in a CSV file that can be shared or loaded with a spreadsheet program such as Excel. The call to 

as.data.frame is necessary to convert the DataFrame object from IRanges package to a data.frame object that can be processed by 

write.csv. A more sophisticated way for exporting results the Bioconductor package ReportingTools which automatically 

generates dynamic HTML documents, including links to external databases using gene identifiers and boxplots summarizing the 

normalized counts across groups.  

If we have used the summarizeOverlaps function to count the reads, then our DESeqDataSet object is built on top of ready-to-use 

Bioconductor objects specifying the genomic coordinates of the genes. We can therefore easily plot our differential expression 

results in genomic space. While the results function by default returns a DataFrame, using the format argument, we can ask for 

GRanges or GRangesList output. We will use the Gviz package for plotting the GRanges and associated metadata. 

5.4.5. Removing hidden batch effects 

We can use statistical methods designed for RNA-seq from the sva package to detect groupings of the samples, and then we can 

add these to the DESeqDataSet design, in order to account for batch effect. The SVA package uses the term surrogate variables 

for the estimated variables that we want to account for in our analysis. Another package for detecting hidden batches is the 

RUVSeq package, with the acronym “Remove Unwanted Variation”. We obtain a matrix of normalized counts for which the 

average count across samples is larger than 1and try to recover any hidden batch effects, supposing that we do not know basic 

information. So we use a full model matrix and a reduced, or null, model matrix with only an intercept term. Finally we specify 

that we want to estimate 2 surrogate variables. 

5.4.6. Time course experiments and Session information 

DESeq2 can be used to analyze time course experiments, for example to find those genes that react in a condition-specific manner 

over time, compared to a set of baseline samples. We use a design formula that models the difference at time 0, the difference over 

time, and any differences over time. A likelihood ratio test should be done where we remove specific differences over time. Genes 

with small p values from this test are those which at one or more time points after time 0 showed a specific effect. This is just one 

of the tests that can be applied to time series data. Another option would be to model the counts as a smooth function of time, and 

to include an interaction term of the condition with the smooth function. It is possible to build such a model using spline basis 

functions within R, and another, more modern approach is using Gaussian processes. We can plot the counts for the groups over 

time using ggplot2, for the gene with the smallest adjusted p value, testing for condition-dependent time profile and accounting for 

differences at time 0. As the last part of RNA-seq DE analysis, we call the function session Info, which reports the version 

numbers of R and all the packages used in this session. It is good practice to always keep such a record of this as it will help to 

track down what has happened in case an R script ceases to work or gives different results because the functions have been 

changed in a newer version of one of your packages. By including it at the bottom of a script, reports will become more 

reproducible. 

6.  CONCLUSION 

In this study we performed a detailed comparative analysis of a number of methods for differential expression analysis from 

RNA-seq data. For the various methods, our comparison focused on the performance of the normalization, control of false 

positives, effect of sequencing depth and replication, and on the subset of gene expressed exclusively in one condition.  RNA seq 

provides with a richer information, whereas microarray provides only probe specific information. We should not calculate fold 

change directly for RNA seq Data. DEseq2 uses the negative binomial distribution but other distributions can be used. 

CuffDiff2 seems to work worse than others. Possibly because it has extra statistics to deal with isoform. Limma, DESeq and  

EdgeR  are  pretty similar. Biological replicates are better than more depth so when dealing with large datasets it is very 

important to adjust the p-values to avoid type 1 errors. In contrast to other approaches, which rely on simulated data 

generated by specific statistical distribution or limited experimental datasets. Overall, no single method emerged as favorable in 
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all comparisons but it is apparent that methods based on negative binomial modeling have improved specificity and sensitivities as 

well as good control of false positive errors with comparable performance.  
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