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ABSTRACT 

 In this paper we have discussed the definitions and the basic properties of open sets, closed sets, accumulation points or limit 

points and sequence. Sets may be neither open nor closed. The reader should not confuse the concept “limit point of a set” with 

the different, though related, concept “limit of a sequence”. Some of the solved and supplementary problems will show the 

relationship between these two concepts. Observe that ⟨𝑎𝑛: 𝑛 ∈ 𝑁⟩ denotes a sequence and is a function. On the other hand, 

*𝑎𝑛: 𝑛 ∈ 𝑁+denotes the range of the sequence and is a set. We have given several characterizations of these sets. We discuss the 

definitions of bounded sequence, convergent sequence, Cauchy sequence and their relations. Then we can study every bounded 

sequences of real numbers contains a convergent subsequence and every Cauchy sequence of real numbers converges to a real 

number. Let A be a bounded, infinite set of real numbers. Then A has at least one accumulation point. We express the definition of 

topology, usual topology and topological space. The creation of topology the science of spaces and figures that remains 

unchanged under continuous deformations represents a phenomenon of this kind, but of a distinctly modern variety. Then we 

begin our study of some properties topological spaces by making the idea of being connected that is being in one piece. We 

observe that, for the usual topology on the line R and in the plane 𝑅2. Finally we express the characterizations of the discrete 

topological space and indiscrete topological space. 

Key Words: Sets, Sequences, Topology, Topological Spaces.  

1. INTRODUCTION 

 This paper provides the discussion in three sections.  The first one is the basis definitions of open sets and their properties on 

topology on the line R and in the plane R2. The second is the basis definitions of closed sets and their properties on topology on 

the line R and in the plane R2. And finally, we study the basis properties of topological spaces. 

The set of real numbers, denotes by R, plays a dominant role in mathematics and in particular, in analysis. In fact, many concepts 

in topology are abstractions of properties of set of real numbers. We assume the reader is familiar with the geometric 

representation of R by means of the points on a straight line and in the plane, by means of the points on a plane [1]. 

 

2. BASIS PROPERTIES 

2.1 Open Sets 

Let 𝐴 be a subset of R. A point 𝑝 ∈ 𝐴 is an interior point of 𝐴 if and only if 𝑝 ∈ 𝑠𝑜𝑚𝑒 𝑜𝑝𝑒𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 𝑆𝑝 which is contained 

in 𝐴; 𝑝 ∈ 𝑆𝑝 ⊂ 𝐴. The set 𝐴is open if and only if each of its points is an interior point [1]. 

2.1.1 Example 

(i) An open interval 𝐴 = (𝑎, 𝑏) is an open set. For, we may choose 𝑆𝑝 = 𝐴 for each 𝑝 ∈ 𝐴. 

(ii) The real line R, itself, is open since any open interval 𝑆𝑝 must be a subset of R, that is 𝑝 ∈ 𝑆𝑝 ⊂ 𝑅. 

(iii) The closed interval 𝐵 = ,𝑎, 𝑏- is not an open set. 

For, any open interval containing 𝑎 𝑜𝑟 𝑏 must contain points outside of 𝐵. Hence the end points 𝑎 𝑎𝑛𝑑 𝑏 are not interior 

points of 𝐵. 

(iv) The empty set ∅ is open since there is no point in ∅ which is not an interior point. 

(v) The infinite open intervals, i.e., the subsets of R defined and denoted by  

        (𝑎, ∞) = *𝑥|𝑥 ∈ 𝑅, 𝑥 > 𝑎+, (−∞, 𝑎) = *𝑥|𝑥 ∈ 𝑅, 𝑥 < 𝑎+ 𝑎𝑛𝑑 (−∞, ∞) = *𝑥|𝑥 ∈ 𝑅+ = 𝑅 are open sets. 

 On the otherhand, the infinite closed intervals, i.e., the subsets of R defined and denoted by ,𝑎, ∞) = *𝑥|𝑥 ∈ 𝑅, 𝑥 ≥ 𝑎+, 

        (−∞, 𝑎 - = *𝑥|𝑥 ∈ 𝑅, 𝑥 ≤ 𝑎+  are not open sets since 𝑎 ∈ 𝑅 is not an interior point of either ,𝑎, ∞) 𝑜𝑟 (−∞, 𝑎-.  
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2.1.2 Theorem 

 The union of any number of open sets in R is open. 

2.1.3 Theorem 

 The intersection of any finite number of open sets in R is open. 

 Next, we will show that an arbitrary intersection of open sets need not be open. 

2.1.4 Example 

 Let 𝐴𝑛 = {.−
1

𝑛
,

1

𝑛
/ |𝑛 ∈ 𝑁} be the class of open intervals. Show that ⋂ 𝐴𝑛

∞
𝑛=1  is not an open set. 

 Solution 

 𝐴𝑛 = {.−
1

𝑛
,

1

𝑛
/ |𝑛 ∈ 𝑁}, i.e., {(−1,1), .−

1

2
,

1

2
/ , .−

1

3
,

1

3
/ , … }. 

  The intersection ⋂ 𝐴𝑛
∞
𝑛=1 = *0+ of the open intervals consists of the single point 0 which is not an open set. 

 Hence an arbitrary intersection of open sets is not an open set. 

2.2 Open Disc 

 A open disc 𝐷 in the plane 𝑅2 is the set of points inside a circle, with center 𝑝 = 〈𝑎1, 𝑎2〉 and radius > 0 , i.e., 

 𝐷 = *𝑞 ∈ 𝑅2: 𝑑(𝑝, 𝑞) < 𝛿+, where 𝑑(𝑝, 𝑞) denotes the usual distance between two points 𝑝 = 〈𝑎1, 𝑎2〉 and 𝑞 = 〈𝑏1, 𝑏2〉 in 𝑅2. 

Let  𝐴 be a subset of  𝑅2. A point plane 𝑝 ∈ 𝐴 is an interior point of 𝐴 if and only if 𝑝 belongs to some open disc 𝐷𝑝 which is 

contained in 𝐴: 𝑝 ∈ 𝐷𝑝 ⊂ 𝐴. 

 The set 𝐴 is open if and only if each of its points is an interior point [1-2]. 

2.2.1 Example 

 Show that the union of any number of open subsets of 𝑅2 is open. 

 Solution 

 Let 𝐴 be a class of open subsets of 𝑅2. 

 Let 𝐻 = ⋃*𝐺: 𝐺 ∈ 𝐴+.   

 Let 𝑝 ∈ 𝐻. 

 We must show that 𝑝 is an interior point of 𝐻. 

 Since 𝑝 ∈ 𝐻, ∃𝐺0 ∈ 𝐴: 𝑝 ∈ 𝐺0. 

 But 𝐺0  is an open set, hence there exists an open disc 𝐷𝑝  such that 𝑝 ∈ 𝐷𝑝 ⊂ 𝐺0. 𝐺0 ⊂ 𝐻 𝑎𝑛𝑑 𝑠𝑜 𝐷𝑝 ⊂ 𝐻. 𝑖. 𝑒. 𝑝 ∈ 𝐷𝑝 ⊂ 𝐻. 

 Hence 𝑝 is an interior point of 𝐻 and so 𝐻 = 𝑈𝐺 is open set. 

2.2.2 Example 

 Show that the intersection of any finite number of open subsets of 𝑅2 is open. 

 Solution 

 Let 𝐺 and 𝐻  be open subsets of 𝑅2. 

 To prove, 𝐺 ∩ 𝐻 is open.(i.e., 𝑝 ∈ 𝑆𝑝 ⊂ 𝐺⋂𝐻). 

 Let 𝑝 ∈ 𝐺⋂𝐻. 

 Then 𝑝 ∈ 𝐺 and 𝑝 ∈ 𝐻. 

 Since 𝐺 and 𝐻  are open sets, there exists open disc 𝐷1 and 𝐷2 such that 𝑝 ∈ 𝐷1 ⊂ 𝐺 and  𝑝 ∈ 𝐷2 ⊂ 𝐻. 

 Then 𝑝 ∈ 𝐷1 ∩ 𝐷2 ⊂ 𝐺 ∩ 𝐻. 

 But 𝐷1 ∩ 𝐷2 = 𝐷. 

 Therefore 𝑝 is an interior point of 𝐺 ∩ 𝐻. 

 Hence  𝐺 ∩ 𝐻 is open. 

2.2.3 Example 

 Prove that every open subset 𝐺 of the plane 𝑅2 is the union of open discs. 

 Solution 

 Since 𝐺 is open, for each 𝑝 ∈ 𝐺 there is open disc 𝐷𝑝 such that  𝑝 ∈ 𝐷𝑝 ⊂ 𝐺. 

 Then  𝐺 =∪ {𝐷𝑝|𝑝 ∈ 𝐺}.       

2.2.4 Example 

 Let 𝐺 be an open subset of 𝑅2, 𝑝 ∈ 𝐺. Prove that there exists an open disc 𝐷 with center 𝑝 such that 𝑝 ∈ 𝐷 ⊂ 𝐺. 

 Solution 

 By definition of an interior point, there exists an open disc, 𝐷1 = *𝑞 ∈ 𝑅2: 𝑑(𝑝1, 𝑞) < 𝛿+ with center 𝑝1 and radius 𝛿 such that  

  𝑝 ∈ 𝐷1 ⊂ 𝐺. So 𝑑(𝑝1, 𝑝) < 𝛿. 

 Let 𝑟 = 𝛿 − 𝑑(𝑝1, 𝑝) > 0 and 𝐷 = {𝑞 ∈ 𝑅2: 𝑑(𝑝, 𝑞) <
𝑟

2
}. 

 Then 𝑝 ∈ 𝐷 ⊂ 𝐷1 ⊂ 𝐺, where 𝐷 is an open disc with center 𝑝. 

2.3 Accumulation Point or Limit Point 

 Let 𝐴 be a subset of 𝑅. A point 𝑝 ∈ 𝑅 is an accumulation point or limit point of 𝐴 if and only if every open set 𝐺 containing 𝑝      
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       contains a point of 𝐴 different from 𝑝 ; i.e., 𝐺 open, 𝑝 ∈ 𝐺 implies 𝐴 ∩ (𝐺\*𝑝+) ≠ ∅. 

 The set of accumulation points of 𝐴, denoted by 𝐴′, is called the derived set of 𝐴.[1-3]. 

2.3.1 Example 

 (i)  Let 𝐴 = {1,
1

2
,

1

3
,

1

4
, … }. 

  The point “0” is an accumulation point of 𝐴 since every open set 𝐺 with 0 ∈ 𝐺 contains an open invertal (−𝑎1, 𝑎2) ⊂ 𝐺    

with -𝑎1 < 0 < 𝑎2 which contains points of 𝐴. The limits point 0 of 𝐴 dose not belong to 𝐴 and 𝐴 does not contain any 

other limit points. Hence 𝐴′ = *0+. 

 (ii) Let 𝑄 be the set of rational numbers. 

  Every real number 𝑝 ∈ 𝑅 is a limit point of 𝑄 since every open set contains rational numbers. 

  Hence 𝑄′ = 𝑅. 

 (iii) The set of integers 𝑍 = *… , −2, −1,0,1,2, … +. 

 Then  𝑍 does not have any points of accumulation. Hence 𝑍′ = ∅. 

2.3.2 Example 

 Determine the accumulation points of each set of real numbers: (i)  𝑁, (ii) (𝑎, 𝑏-, (iii) 𝑄𝑐 , 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠. 

 Solution 

(i) 𝑁 = the sets of natural numbers. 𝑁 does not have any limit points. 

               For, if “a” is any real number, we can find 𝛿 > 0 such that open set (a-𝛿, 𝑎 + 𝛿) contains no point of 𝑁 other than “a”. 

  Hence 𝑁′ = ∅. 

(ii) (a,b]. 

       Every point 𝑝 ∈ ,𝑎, 𝑏- is a limit point of (a,b]. 

 Since every open interval containing 𝑝 ∈ ,𝑎, 𝑏- will contain points of (a,b] other than 𝑝.  

 Hence (𝑎, 𝑏-′ = ,𝑎, 𝑏-. 

(iii) 𝑄𝑐 , 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑜𝑖𝑛𝑡𝑠. 

       Every real number 𝑝 ∈ 𝑅 is a limit point of  𝑄𝑐   since every open interval containing 𝑝 ∈ 𝑅 

              Will contain points of 𝑄𝑐  other than 𝑝. 

              Hence (𝑄𝑐)′ = 𝑅. 

2.3.3 Example 

 Let 𝐴′ be the derived set, i.e., the set of limit points of a set 𝐴. Find sets 𝐴 such that 

(i) A and 𝐴′ are disjoint, 

(ii) 𝐴 is a proper subset of  𝐴′, 

(iii) 𝐴′ is a proper subset of 𝐴, 

(iv) 𝐴′ = 𝐴. 

 Solution 

(i) Let 𝐴 = {1,
1

2
,

1

3
,

1

4
, … }. 

        Then 𝐴′ = *0+ and so 𝐴 and 𝐴′ are disjoint. 

 (ii) Let 𝐴 = (𝑎, 𝑏-. 

  Then 𝐴′ = ,𝑎, 𝑏- and so 𝐴 ⊂ 𝐴′, 𝐴 ≠ 𝐴′. 

  Hence 𝐴 is a proper subset of 𝐴′. 

 (iii) Let 𝐴 = {0,1,
1

2
,

1

3
,

1

4
, … }. 

        Then 𝐴′ = *0+ and so 𝐴 ⊂ 𝐴′, 𝐴 ≠ 𝐴′. 

  Hence 𝐴′ is a proper subset of 𝐴. 

 (iv) Let 𝐴 = ,𝑎, 𝑏-. 

  Then each point of 𝐴 is a limit of 𝐴. 

  So 𝐴′ = ,𝑎, 𝑏-. 

  Hence 𝐴 = 𝐴′. 

2.4 Closed Sets 

 A subset 𝐴 of 𝑅 is a closed set if and only if its complement 𝐴𝑐 is an open set [4]. 

2.4.1 Theorem 

 A subset 𝐴 of 𝑅 is a closed if and only if 𝐴 contains each of its points of accumulation. 

2.4.2 Example 

 (i) The closed interval [a,b] is a closed set since its complement (−∞, 𝑎) ∪ (𝑏, ∞), the union of two open infinite intervals, is 

open. 

 (ii) The set 𝐴 = {1,
1

2
,

1

3
,

1

4
, … } is not closed since 0 is a limit point of 𝐴 but 0∉ 𝐴. 
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 (iii) The empty set ∅ and the entire line 𝑅 are closed sets since their complements 𝑅 and ∅, respectively, are open sets. 

2.4.3 Example 

 A set 𝐹 is closed if and only if its complement 𝐹𝑐  is open. 

 Solution 

 Since (𝐹𝑐 )𝑐 = 𝐹; So 𝐹 is the complement of 𝐹𝑐 . Thus, by definition, 𝐹 is closed if and only if 𝐹𝑐  is open.  

2.4.4 Example 

 Prove that the union of a finite number of closed sets is closed. 

 Proof 

 Let 𝐹1,…,𝐹𝑚 be closed sets and 𝐹 = 𝐹1 ∪ … ∪ 𝐹𝑚.  

 Then  𝐹 = (𝐹1 ∪ … ∪ 𝐹𝑚)𝑐 

   =𝐹1
𝑐 ∩ … ∩ 𝐹𝑚

𝑐 . 

 𝐹𝑖  is closed and 𝐹𝑖
𝑐 is open. 

 So 𝐹𝑐 is the intersection of a finite number of open sets  𝐹𝑖
𝑐. 

 Thus 𝐹𝑐 is also open. 

 Hence (𝐹𝑐)𝑐 = 𝐹 is closed. 

2.4.5 Example 

 Proved that the intersection of any number of closed sets is closed. 

 Solution 

 Let {𝐹𝑖+ be a class of closed sets and 𝐹 = ⋂ 𝐹𝑖𝑖  .  

 Then 𝐹𝑐 = (⋂ 𝐹𝑖)𝑖
𝑐
 

    𝐹𝑐 = ⋃ 𝐹𝑖
𝑐

𝑖 . 

 𝐹𝑖 is closed and 𝐹𝑖
𝑐is open. 

 So 𝐹𝑐 is the union of any number of open sets 𝐹𝑖
𝑐. 

 Thus 𝐹𝑐 is open. 

 Hence (𝐹𝑐)𝑐 = 𝐹 is closed. 

2.4.6 Example 

 Proved that a subset of 𝑅2 is closed if and only if it contains each of its accumulation points. 

 Solution 

 Suppose 𝑝is a limit point of a closed set 𝐹 ⊂ 𝑅2. Then every open disc containing 𝑝 contains points of 𝐹 other than  𝑝. 

 Hence there cannot be open disc 𝐷𝑝 containing 𝑝 which is completely contained in 𝐹𝑐 . 

 So 𝑝 is not an interior point of 𝐹𝑐. But 𝐹𝑐 is open, since 𝐹 is closed. 

 Then 𝑝 ∉ 𝐹𝑐 , 𝑝 ∈ 𝐹. 

 Conversely, suppose 𝐹 contains each of its accumulation points. 

 Let 𝑝 ∈ 𝐹𝑐. 

 Then 𝑝 is not a limit point of 𝐹. 

 Hence there exists at least one open disc 𝐷𝑝 containing 𝑝 such that 𝐷𝑝 does not contain any points of 𝐹. 

 So 𝐷𝑝 ⊂ 𝐹𝑐 . 

 Hence  𝑝 is an interior point of 𝐹𝑐 and 𝐹𝑐  is open. Then 𝐹 is closed. 

2.5 Sequence 

 A sequence denoted by 〈𝑆𝑛〉 = 〈𝑠1, 𝑠2, 𝑠3, … , 𝑠𝑛, … 〉, 𝑛 ∈ 𝑁 is a function whose domain is 𝑁 = *1,2, … +. 

 The image 𝑆𝑛 , 𝑛 ∈ 𝑁 is called the 𝑛𝑡ℎ term of the sequence. [4] 

2.6 Bounded 

 A sequence 〈𝑆𝑛〉 is said to be bounded if its range *𝑆𝑛: 𝑛 ∈ 𝑁+ is a bounded set. 

2.6.1 Example 

 (i) The sequence 〈𝑆𝑛〉 = 〈1,3,5, … 〉 is not a bounded sequence. 

  For, The range of  〈𝑆𝑛〉 = *1,3,5, … + is not bounded and so 〈𝑆𝑛〉  is not bounded. 

(ii) The sequence 〈𝑆𝑛〉 = 〈−
1

2
,

1

4
, −

1

8
,

1

16
… 〉 is a bounded sequence. 

 For, The range of  〈𝑆𝑛〉 = {−
1

2
,

1

4
, −

1

8
,

1

16
… } is bounded and so 〈𝑆𝑛〉  is bounded. 

 (iii) The sequence 〈𝑆𝑛〉 = 〈1,0,1,0, … 〉 is a bounded sequence. 

  For, The range of  〈𝑆𝑛〉 = *0,1+ is bounded and so 〈𝑆𝑛〉  is a bounded sequence. 

2.7 Converges 

The sequence 〈𝑎𝑛: 𝑛 ∈ 𝑁〉 of real numbers converges to 𝑏 ∈ 𝑅, or, equivalently 𝑏 the limit of the sequence 〈𝑎𝑛: 𝑛 ∈ 𝑁〉 if for 

every 휀 > 0 there exists a positive integer 𝑛0 such that 𝑛 > 𝑛0 implies |𝑎𝑛 − 𝑏| < 휀.  
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2.8 Cauchy Sequence 

A sequence 〈𝑎𝑛: 𝑛 ∈ 𝑁〉 of real numbers is a Cauchy sequence if and only if for every 휀 > 0 there exists a positive integer 𝑛0 

such that 𝑛, 𝑚 > 𝑛0 implies |𝑎𝑛 − 𝑎𝑚| < 휀.In other words, a sequence is a Cauchy sequence if and only if the terms of 

sequence become arbitrarily close to each other as gets 𝑛 large [4]. 

2.8.1 Example 

 Show that every convergent sequence is a Cauchy sequence. 

 Solution 

 Let 〈𝑎𝑛〉is a convergent sequence with  𝑏. 

 ∀휀 > 0, ∃𝑛𝑜 ∈ 𝑁: 𝑛 > 𝑛0  ⟹ |𝑎𝑛 − 𝑏| <
𝜀

2
. 

   𝑚 > 𝑛0  ⟹ |𝑎𝑚 − 𝑏| <
𝜀

2
. 

 For  𝑛, 𝑚 > 𝑛0  ⟹ |𝑎𝑛 − 𝑎𝑚| 

    = |𝑎𝑛 − 𝑏 + 𝑏 − 𝑎𝑚| 

    ≤ |𝑎𝑛 − 𝑏| + |𝑏 − 𝑎𝑚| 

    <
𝜀

2
+

𝜀

2
  

    = 휀 . 

 Then 〈𝑎𝑛〉 is a Cauchy sequence.  

2.8.2 Example 

 Show that every Cauchy sequence 〈𝑎𝑛〉 of real numbers is bounded. 

 Solution 

 Let 〈𝑎𝑛〉be a Cauchy sequence. 

 𝐿𝑒𝑡 휀 = 1, ∃𝑛𝑜 ∈ 𝑁: 𝑛, 𝑚 > 𝑛0  ⟹ |𝑎𝑛 − 𝑎𝑚| < 1. 

   𝑚 ≥ 𝑛0  ⟹ |𝑎𝑛 − 𝑎𝑚| < 1. 

 i.e,  -1< 𝑎𝑛 − 𝑎𝑛0
< 1 

   𝑎𝑛0
− 1 < 𝑎𝑛 < 𝑎𝑛0

+ 1 

Let  ∝= max (𝑎1, 𝑎2, … , 𝑎𝑛0
, 𝑎𝑛0

+ 1) 

 𝛽 = min (𝑎1, 𝑎2, … , 𝑎𝑛0
, 𝑎𝑛0

− 1). 

 Then ∝ is an upper bound and 𝛽 is a lower bound for the range *𝑎𝑛+ of the sequence 〈𝑎𝑛〉. Hence 〈𝑎𝑛〉 is bounded. 

2.9 Some Properties on Topological Spaces 

 Let 𝑋 be a non-empty set. The class  𝜏 of subsets of 𝑋 is a topology on 𝑋  if and only if 𝜏 satisfies the following axioms. 

 [𝑂1-    ∅ ∈ 𝜏 , 𝑋 ∈ 𝜏 . 

 [𝑂2-    The union of any number of sets in 𝜏 belongs to 𝜏. 

 [𝑂3-    The intersection of any two sets in belongs to 𝜏. 

   The numbers of 𝜏 are called open sets and the pair (𝑋, 𝜏) is called a topological space [1-3]. 

2.9.1 Usual Topology 

 Let 𝜇 denote the class of all open sets of real numbers. Then 𝜇 is a topology on 𝑅, called usual topology on 𝑅. 

2.9.2 Example 

 Consider the classes of subsets of 𝑋 = *𝑎, 𝑏, 𝑐, 𝑑, 𝑒+. 

 𝜏1 = {𝑋, ∅, *𝑎+, *𝑐, 𝑑+, *𝑎, 𝑐, 𝑑+, *𝑏, 𝑐, 𝑑, 𝑒+}. 

 𝜏2 = {𝑋, ∅, *𝑎+, *𝑐, 𝑑+, *𝑎, 𝑐, 𝑑+, *𝑏, 𝑐, 𝑑+}. 

 𝜏3 = {𝑋, ∅, *𝑎+, *𝑐, 𝑑+, *𝑎, 𝑐, 𝑑+, *𝑎, 𝑏, 𝑑, 𝑒+}. 

 Solution 

 Observe that 𝜏 is a topology on 𝑋, since it satisfies the three axioms. 

 For, since 𝑋 and ∅ belong to 𝜏1, the axiom [𝑂1- is satisfied. 

 Since the union of any number of sets in 𝜏1 belongs to 𝜏1, the axiom [𝑂2-  is satisfied. 

 Since the intersection of any two sets in 𝜏1 belongs to 𝜏1, the axiom [𝑂3-  is satisfied. 

For 𝜏2, 𝜏2  is not a topology on 𝑋, since *𝑎, 𝑐, 𝑑+ ∈ 𝜏2, *𝑏, 𝑐, 𝑑+ ∈ 𝜏2, but *𝑎, 𝑐, 𝑑+ ∪ *𝑏, 𝑐, 𝑑+ = *𝑎, 𝑏, 𝑐, 𝑑+ ∉ 𝜏2, 𝑖. 𝑒, 𝜏2does not 

satisfy the axiom [𝑂2- .  

For 𝜏3, 𝜏3 is not a topology on 𝑋, since  *𝑎, 𝑐, 𝑑+ ∈ 𝜏3, *𝑎, 𝑏, 𝑑, 𝑒+ ∈ 𝜏3, but *𝑎, 𝑐, 𝑑+ ∩ *𝑎, 𝑏, 𝑑, 𝑒+ = *𝑎, 𝑑+ ∉ 𝜏3, 𝑖. 𝑒. , 𝜏3 does 

not satisfy the axiom [𝑂3-. 

2.10 Discrete Topological Space and Indiscrete Topological Space 

Let  𝐷 be denote the class of all subsets of 𝑋. Then 𝐷 satisfies the axioms for a topology on 𝑋. This topology is called the 

discrete topology and (𝑋, 𝐷) is called a discrete topological space. 

 The class 𝐽 = *𝑋, ∅+ is a topology. It is called the indiscrete topology and (𝑋, 𝐽) is called a indiscrete topological space [4]. 
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2.10.1 Example 

 The intersection 𝜏1 ∩ 𝜏2 of any two topologies 𝜏1 𝑎𝑛𝑑 𝜏2 on 𝑋 is also a topology on 𝑋. 

 Solution 

 Since 𝜏1 𝑎𝑛𝑑 𝜏2 are topologies on 𝑋, 𝑋 and ∅ each belongs to both 𝜏1 𝑎𝑛𝑑 𝜏2. 

 Hence 𝑋 𝑎𝑛𝑑 ∅ each belongs to 𝜏1 ∩ 𝜏2. The axiom [𝑂1- is satisfied. 

 Let 𝐴𝑖 ∈ 𝜏1 ∩ 𝜏2, then  𝐴𝑖 ∈ 𝜏1 and  𝐴𝑖 ∈ 𝜏2 for every 𝑖. Since 𝜏1 and 𝜏2 are topologies, ⋃ 𝐴𝑖𝑖 ∈ 𝜏1 and ⋃ 𝐴𝑖𝑖 ∈ 𝜏2. 

 Then ⋃ 𝐴𝑖𝑖 ∈ 𝜏1 ∩ 𝜏2. The axiom [𝑂2- is satisfied. 

 If 𝐺, 𝐻 ∈ 𝜏1 ∩ 𝜏2, then 𝐺, 𝐻 ∈ 𝜏1 and 𝐺, 𝐻 ∈ 𝜏2. Since 𝜏1 and 𝜏2 are topologies, 𝐺 ∩ 𝐻 ∈ 𝜏1 and 𝐺 ∩ 𝐻 ∈ 𝜏2. 

 Then 𝐺 ∩ 𝐻 ∈ 𝜏1 ∩ 𝜏2. The axiom [𝑂3- is satisfied. Thus 𝜏1 ∩ 𝜏2 is a topology on 𝑋. 

 But, the union of topologies need not be a topology. 

 Counter example, 

 𝑋 = *𝑎, 𝑏, 𝑐+, 𝜏1 = {𝑋, ∅, *𝑎+}, 𝜏2 = {𝑋, ∅, *𝑏+}. 

 𝜏1 and 𝜏2 are topologies. 

 𝜏1 ∪  𝜏2 = {𝑋, ∅, *𝑎+, *𝑏+}. 

 *𝑎+ ∈ 𝜏1 ∪  𝜏2 

 *𝑏+ ∈ 𝜏1 ∪  𝜏2 

 *𝑎+ ∪ *𝑏+ = *𝑎, 𝑏+ ∉ 𝜏1 ∪  𝜏2 

 Therefore [𝑂2- is not satisfied. 

 Therefore 𝜏1 ∪  𝜏2 is not a topology. 

 In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the 

points form a discontinuous sequence, meaning they are isolated from each other in a certain sense. The discrete topology is the 

finest topology that can be given on a set, i.e., it defines all subsets as open sets. In particular, each singleton is an open set in the 

discrete topology [5]. 

 

3. CONCLUSIONS 

 We have discussed the basic properties open sets, closed sets and some characterizations of these sets on the topology of the 

line and plane. Moreover, it is also mentioned in this paper that a topological spaces. Some illustrative examples have been 

explored in order to distinguish between their properties. It has been vividly discussed in this paper. I hope thatthese notes help; 

please do let me know if anything requires clarification. 
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