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ABSTRACT  

Fading is a major impairment when transmitting a signal in wireless communication channel. It is caused by 

multipath propagation. That is signals from different paths can constructively or destructively interfere with each 

other. Thus, it becomes very necessary to reduce this effect, to transmit the signal effectively to the receiver This work 

explains the concept of multipath interference as well as technique used in reducing such, which include the two 

branch selection diversity that analytically derives an upper bound for the output power of two-sensor branch-

selection reception, based on an empirically proven “geometric model” of the wireless propagation channel. 

Diversity techniques are very useful to improve the performance of high speed wireless channel to transmit data and 

information. 

 

Key Words: Multipath Interference, Two-Branch Selection Diversity, Upper Bound, Output Power. 

_______________________________________________________________________________________________ 

 

1. INTRODUCTION  
Multipath interference is a phenomenon in the physics of waves whereby a wave from a source travels to a detector via 

two or more paths and, under the right condition; the two (or more) components of the wave interfere. Multipath 

interference is a common cause of "ghosting" in analog television broadcasts. The condition necessary is that the 

components of the wave remain coherent throughout the whole extent of their travel. The interference will arise owing 

to the two (or more) components of the wave having, in general, travelled a different length (as measured by optical 

path length, geometric length and refraction (differing optical speed)), and thus arriving at the detector out of phase 

with each other. The signal due to indirect paths interferes with the required signal in amplitude as well as phase which 

is called multipath fading. 

In wireless telecommunications, multipath is the propagation phenomenon that results in radio signals reaching the 

receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and 

refraction, and reflection from water bodies and terrestrial objects such as mountains and buildings. The effects of 

multipath include constructive and destructive interference, and phase shifting of the signal. Destructive interference 

causes fading. Where the magnitudes of the signals arriving by the various paths have a distribution known as the 

Rayleigh distribution, this is known as Rayleigh fading. Where one component (often, but not necessarily, a line of 

sight component) dominates, a Rician distribution provides a more accurate model, and this is known as Rician fading. 

Examples of multipath propagation in facsimile and (analog) television transmission, include jitter and ghosting, seen 

as a faded duplicate image to the right of the main image. Ghosts occur when transmissions bounce off a mountain or 
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other large object, while also arriving at the antenna by a shorter, direct route, with the receiver picking up two signals 

separated by a delay. Radar multipath echoes from an actual target cause ghosts to appear. 

In radar processing, multipath causes ghost targets to appear, deceiving the radar receiver. These ghosts are 

particularly bothersome since they move and behave like the normal targets (which they echo), and so the receiver has 

difficulty in isolating the correct target echo. These problems can be overcome by incorporating a ground map of the 

radar's surroundings and eliminating all echoes which appear to originate below ground or above a certain height. In 

digital radio communications (such as GSM) multipath can cause errors and affect the quality of communications. The 

errors are due to intersymbol interference (ISI). Equalisers are often used to correct the ISI. Alternatively, techniques 

such as orthogonal frequency division modulation, rake receivers and two-branch selection diversity may be used. In a 

Global Positioning System receiver, Multipath Effect can cause a stationary receiver's output to indicate as if it were 

randomly jumping about or creeping. When the unit is moving the jumping or creeping is hidden, but it still degrades 

the displayed accuracy. 

Multipath propagation may also happen in wired media, especially where impedance mismatch causes signal 

reflection. A well-known example is power line communication.  High-speed power line communication systems 

usually employ multi-carrier modulations to avoid the intersymbol interference that multipath propagation would 

cause [1]. 

Mathematical model of the multipath impulse response 

                                                       
 

 

                                               Fig 1.1 Mathematical model of the multipath impulse response. 

 

The mathematical model of the multipath can be presented using the method of the impulse response used for studying 

linear systems. Suppose you want to transmit a single, ideal Dirac pulse of electromagnetic power at time 0, i.e. 

 
At the receiver, due to the presence of the multiple electromagnetic paths, more than one pulse will be received (we 

suppose here that the channel has infinite bandwidth, thus the pulse shape is not modified at all), and each one of them 

will arrive at different times. In fact, since the electromagnetic signals travel at the speed of light, and since every path 

has a geometrical length possibly different from that of the other ones, there are different air travelling times (consider 

that, in free space, the light takes 3 μs to cross a 1 km span). Thus, the received signal will be expressed by 

 
where is the number of received impulses (equivalent to the number of electromagnetic paths, and possibly very 

large), is the time delay of the generic impulse, and represent the complex amplitude (i.e., magnitude 

and phase) of the generic received pulse. As a consequence, also represents the impulse response function 

of the equivalent multipath model[1]. 

http://en.wikipedia.org/wiki/Radar
http://en.wikipedia.org/wiki/Receiver_(radio)
http://en.wikipedia.org/wiki/GSM
http://en.wikipedia.org/wiki/Intersymbol_interference
http://en.wikipedia.org/wiki/Equalization_filter
http://en.wikipedia.org/wiki/Orthogonal_frequency_division_modulation
http://en.wikipedia.org/wiki/Rake_receiver
http://en.wikipedia.org/wiki/Impedance_matching
http://en.wikipedia.org/wiki/Signal_reflection
http://en.wikipedia.org/wiki/Signal_reflection
http://en.wikipedia.org/wiki/Power_line_communication
http://en.wikipedia.org/wiki/Intersymbol_interference
http://en.wikipedia.org/wiki/Impulse_response
http://en.wikipedia.org/wiki/Linear_system
http://en.wikipedia.org/wiki/Dirac_delta_function
http://en.wikipedia.org/wiki/Electromagnetism
http://en.wikipedia.org/wiki/Channel_(communications)
http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
http://en.wikipedia.org/wiki/Speed_of_light
http://en.wikipedia.org/wiki/Free_space
http://en.wikipedia.org/wiki/File:Multipath_impulse_response.png


International Journal of Advances in Scientific Research  and Engineering (ijasre)           Vol.3 (8)  Sep - 2017 

www.ijasre.net Page 23 
 

More in general, in presence of time variation of the geometrical reflection conditions, this impulse response is time 

varying, and as such we have 

 

 

              

Very often, just one parameter is used to denote the severity of multipath conditions: it is called the multipath time, 

, and it is defined as the time delay existing between the first and the last received impulses 

 

                                      
 

                               Fig 1.2 Mathematical model of the multipath channel transfer function. 

In practical conditions and measurement, the multipath time is computed by considering as last impulse the first one 

which allows to receive a determined amount of the total transmitted power (scaled by the atmospheric and 

propagation losses), e.g. 99%. 

Keeping our aim at linear, time invariant systems, we can also characterize the multipath phenomenon by the channel 

transfer function , which is defined as the continuous time Fourier transform of the impulse response  

 
where the last right-hand term of the previous equation is easily obtained by remembering that the Fourier transform of 

a Dirac pulse is a complex exponential function, an eigen function of every linear system. The obtained channel 

transfer characteristic has a typical appearance of a sequence of peaks and valleys (also called notches); it can be 

shown that, on average, the distance (in Hz) between two consecutive valleys (or two consecutive peaks), is roughly 

inversely proportional to the multipath time. The so-called coherence bandwidth is thus defined as 

 
For example, with a multipath time of 3 μs (corresponding to a 1 km of added on-air travel for the last received 

impulse), there is a coherence bandwidth of about 330 kHz[1].  

 

 

2. TWO BRANCH SELECTION DIVERSITY TECHNIQUE 

Diversity combining is the technique applied to combine the multiple received signals of a diversity reception device 

into a single improved signal. Diversity combining reduces one possible single-point failure: any single receiver 

failure, or local interference to a single receiver, will not block reception on the entire system. Equipment sites can 

http://en.wikipedia.org/w/index.php?title=Multipath_time&action=edit&redlink=1
http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Eigenfunction
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host many radio transmitters and receivers. A single site is subject to local, site-specific interfering signals. These 

interfering signals may come and go as transmitters switch on and off. 

A potential problem with receivers located at high-elevation receiver sites is that they may acquire signals from distant 

counties, prefectures, or other provinces. These unwanted, distant signals can be stronger than desired signals from 

local walkie-talkies. The distant signals may block local weak signals in some cases. Having several receive sites 

increases the probability that one of the sites will receive the local signal in the presence of a distant, undesired one. 

Selective calling can eliminate users having to listen to the audio of distant signals even though the distant signals are 

within receive range of one or more receivers [1]. 

3. THE BRANCH-SELECTION STRATEGY OF SPACE-DIVERSITY WIRELESSRECEPTION 

 
For a wireless receiver equipped with multiple sensors, the receiver may choose among (or may combine) various 

sensors’ individual measurements, to produce an improved composite signal, thereby improving the wireless link’s 

data rate, signal-to-noise ratio, and reliability. “Space diversity” reception (a.k.a. “spatial diversity” reception) refers to 

the above pre-detection procedure using sensors at distinct locations. The motivation is as follows: Two identical 

sensors, spaced apart as little as a fractional wavelength, may register signals of widely different amplitudes. This is 

because each propagation-multipath would undergo its unique sequence of reflections and diffractions, plus corruption 

by multiplicative noise. When a propagation multipath arrives at a sensor, its aforementioned history would define that 

propagation multipath’s amplitude, Doppler, arrival angle, and arrival time delay. Many such propagation multipaths 

will sum together, constructively or destructively, to produce the signal measured at that sensor. Whether this 

summation is constructive or destructive depends critically on the sensor’s spatial location. Destructive summation at 

one sensor needs not preclude a link disconnection, because non-destructive summation could occur at another sensor. 

“Space diversity” reception often uses as few as two sensors. Standards that use two receive-antennas include: IEEE 

802.16e (i.e., WiMAX), IEEE 802.11g and IEEE 802.11n for Wireless LAN. Branch selection” (a.k.a. “antenna 

selection,” “selection diversity,” or “selection combining”) is one common “space diversity” reception strategy, 

selecting the sensor (among all sensors) with the strongest reception at a given time moment, for use by the detector. 

“Branch selection” differs from “branch switching,” which stays with the current sensor so long as its power exceeds a 

pre-set threshold. “Branch selection” is algorithmically simpler than “branch combining,” which weights and sums all 

sensors’ individual signals. These summation weights would be set as identical in “equal gain combining,” but would 

be set to produce coherent summation in “maximal-ratio combining.” This present work focuses on two-sensor 

“branch selection” reception. Two-sensor “branch selection” is common in base stations for Wi-Fi networking and for 

cordless telephones. There, the two antennas are usually spaced apart by about a wavelength[2]. 

4. CONTRIBUTION OF THE PRESENT WORK 

 
This paper will analytically derive an upper bound of the output power of two-branch selection in wireless space-time 

reception. The subsequent derivation will employ a specific geometric model, that has been empirically verified to 

produce faithful expressions for the second-order spatial correlation coefficient across two receive-antennas, while 

coinciding with the well known formula in (1). Section I will define the geometric model of the fading 

channel. Section II will derive the mean upper bound, the tightness of which will be accessed via Monte Carlo 

simulations in Section III. 
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4.1 The Geometric Model Of The Fading Channel 
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Fig.4.1. The spatial geometry inter-relating the transmitter, the scatterers, and the two sensors of the receiver.  

 

Referring to Fig.4.1, a transmitter is located at ZTx = [0, 0] (i.e. centre of the circle) on a two-dimensional Cartesian 

plane ℛ 
2
, and emits omnidirectionally. Also on this plane are many scatterers. Here, each scatterer acts as a lossless 

omnidirectional re-transmitter, producing one multipath towards each sensor. The transmitted signal bounces off every 

scatterer, in parallel, producing many multipaths towards each sensor of the receiver. That is, if 𝑆 number of scatterers 

exist in ℛ 
2
, then 𝑆 multipaths will travel from the transmitter to each sensor, with each multipath representing one 

“bounce” off a distinct scatterer. 

 

A. The Scatterers’ Spatial Distribution 

The scatterers’ locations are modeled as spatially distributed according to a two-dimensional heterogeneous Poisson 

spatial point process Π(ℬ)indexed on subsets of ℛ 
2
. For any ℬ, the random number Π(ℬ) of points inℬ is distributed 

according to a Poisson law with parameter Λ(ℬ) = E[Π(ℬ)], the expected number of scatterers in the ℬ  set . The 

scatterer-field itself is 

random, with the number and the locations of the scatterers in any  𝑑z ∈ ℛ 
2
 randomized, according to the Poisson law 

with parameter Λ(𝑑z). The present model specifies the statistical expectation of the scatterer-field’s spatial density, not 

the spatial density itself. This Poisson model could thus account for the variability in the scatterers’ locations, from 

one field scenario to another. This Poisson field has a heterogeneous intensity, specifically a uni-Gaussian (a.k.a. 

“bivariate Gaussian” in statistics) intensity, 

 

 

Λ(𝑑z)=1/2𝜋√{(1 − 𝜌2)𝜍𝑥2𝜍y
2} 

exp {−(𝑧x
2+ 𝑧y

2− 2𝜌𝜍𝑥𝜍𝑦𝑧𝑥𝑧𝑦) / 2(1 − 𝜌2)𝜍x
2𝜍y

2}𝑑z…………………………………(1) 

=1/2𝜋∣𝜮∣1/2 exp {−1/2z𝐻𝜮−1z}z, 
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where 𝜮 = 𝜍x2   𝜌𝜍𝑥𝜍𝑦 
         𝜌𝜍𝑥𝜍𝑦      𝜍y

2  

 
z = 𝑧𝑥   There, 𝜍𝑥 and𝜍𝑦 

       𝑧𝑦  

 
symbolize the scatterers’ root-mean-square spatial spread along the 𝑥-axis and the 𝑦-axis, respectively. The parameter 

𝜌 controls the relationship of the spatial spread between the 

two Cartesian axes. The superscript 𝐻 denotes the Hermitian operator. That which is Gaussian here is the parameter 

Λ(𝑑z)[4]. This model (of the scatterers’ spatial distribution) has been empirically verified to produce faithful 

expressions for the second-order spatial correlation coefficient across two receive-antennas in wireless multipath 

fading. In this uni-Gaussian intensity, the expected number of scatterers decreases, as it gets farther from the 

transmitter. This mathematical property is physically appealing: For a scatterer closer to the transmitter, that scatterer 

would less likely be blocked from the transmitter by other scatterers. Hence, the nearer a scatterer is to the transmitter, 

the more probable that scatterer would be reached by the transmitter and could thus re-transmit towards the sensor. 

Hence, a scatterer closer to the transmitter would likely have more impact on the overall multipath profile. That is, a 

scatterer’s re-transmission activity depends on that scatterer’s spatial location, but it is mathematically simpler to 

model all scatterers as identical re-transmitters and more densely populated closer to the transmitter. 

 

B. The Re-Transmitted Multipaths’ Initial Phases 

Consider a multipath bouncing off a scatterer at z = [𝑧𝑥, 𝑧𝑦] and reaching sensor  

#1 at zRx,1 = −(𝑑1cos(𝛽−𝜃), 𝑑1sin(𝛽−𝜃)). 

  This arriving multipath equals the transmitted signal multiplied by the channel-induced complex-valued coefficient 

𝑐1(z) = 𝑒𝑗𝜑(z)………………………………………………………………………………………….(2) 

Similarly for a multipath reaching sensor  

#2 at zRx,2 = (𝑑𝑠𝑝−𝑑1 cos(𝛽 − 𝜃),−𝑑1 sin(𝛽 − 𝜃)). 

𝑐2(z) = 𝑒𝑗(𝜑(z)−Δ(z))………………………………………………………………………………….(3) 

These multipaths share the same initial phase of (z), incurred when they are re-transmitted by the scatterer at z. This 

initial phase is modeled as uniformly random over (−𝜋, 𝜋), i.e. [(z)∣z] ∼ 𝑈(−𝜋, 𝜋). This initial phase is also modeled 

as statistically independent of Π(ℛ 
2
). This initial phase (z) depends on only the scatterer’s location, but not the 

sensor’s location. Furthermore, any two scatterers’ initial phases are modeled as statistically independent. For the 

multipaths’ temporal phase-difference Δ(z) between sensors #1 and #2 at the receiver, 

 Δ(z) =2𝜋/𝜆 [𝑠1(z) − 𝑠2(z)]. 

Referring to the spatial geometry in Fig.4.1, 

 

[𝑠ℓ(z)]2 = [𝑎(z)]2 +𝑑ℓ
2 

+2(z)ℓCos(𝛼(z) − 𝛾ℓ(zTx)), ∀ℓ =1,2, 

where 𝑎(z) = ∣z − zTx∣ denotes the distance between the transmitter and the scatterer at z. Hence, 

Δ(z) =2𝜋/𝜆 [√𝑑1
2
+ 2𝑎(z)𝑑1 cos(𝛼(z) − 𝛾1(zTx)) + 𝑎(z)

2 - √𝑑2
2
+2(z)2 cos(𝛼(z) − 𝛾2(zTx)) + 𝑎(z)

2 
]

     
 

 

≃ 2𝜋/𝜆 [𝑑1 − 𝑑2 + (z) (𝜁𝑥 cos (z) − 𝜁𝑦 sin (z))]= 2𝜋/𝜆 [𝑑1 − 𝑑2 + ⟨𝜻, z − zTx⟩]…………………..(4) 

where 𝜆 symbolizes the wireless signal’s carrier-wavelength, 

𝜻 = [𝜁𝑥,−𝜁𝑦], 𝜁𝑥 = 2/(𝑑1+𝑑2)[𝑑𝑠𝑝−(𝑑1−𝑑2)Cos(𝜃)Cos(𝛽)],  

𝜁𝑦 =2/(𝑑1+𝑑2)(𝑑1 − 𝑑2)Cos(𝜃)Sin(𝛽), and ⟨v1,v2⟩ 

denotes an inner vector-product between two size-compatible vectors v1 and v2. The above approximation in (4) holds 

for dc ≫ trace (Σ) and dc ≫ dsp [3]. These two inequalities, together, require each scatterer to be sufficiently close to the 
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mobile relative to the basestation. Applicable field scenarios include basestations elevated on a tower or otherwise not 

immediately surrounded by prominent scatterers[3]. 

 

 
4.2. The Derivation Of A Mean Upper Bound Of The Output Power 

 

The vector-sum of the stochastic fading coefficients of all multipaths that arrive at sensor #1 gives sensor #1’s fading-

gain, 

𝐶1 =∫ℛ2𝑐1(z)Π(𝑑z) =∫ℛ2𝑒𝑗𝜑
(z)Π(𝑑z),…………………………………………………(5) 

with 𝐸Π,z,𝜑{𝐶1}  = ∫ℛ2𝐸{𝑒𝑗𝜑(z)}{Π(𝑑z)} = 0. 

Analogously, sensor #2’s fading-gain equals 

𝐶2 =∫ℛ2𝑐2(z)Π(𝑑z) =∫ℝ2
𝑒𝑗(𝜑(z)−Δ(z))Π(𝑑z)……………………………………………(6) 

Two-sensor branch-selection reception’s output power equals (max {/C1/
2
,/C2/

2
}).Here, 𝐶1, 𝐶2, and (max 

{/C1/
2
,/C2/

2
})are stochastic variables, dependent on Π, z, and 𝜑. To obtain the expected output power, apply the “Law 

of Total Expectation”: 

𝐸Π,z,𝜑(max {/C1/
2
,/C2/

2
}) = 𝐸Π,z[𝐸𝜑(max {/C1/

2
,/C2/

2
}) ∣ Π,z)]…………………………….(7) 

The above expectation is taken first with regard to 𝜑, in order to ease the subsequent derivation. For any specific 

realization of Π, the number of scatterers is set, and (5) and (6) would have their integrals become finite sums, which 

are easier to manipulate. For the inner expectation in (7), derivation for the upper bound is as follows: 

𝐸𝜑 (max {/C1/
2
,/C2/

2
} )∣Π = 𝑛; z1, . . . z𝑛) 

≤ 𝑛 +4/  Σ(𝑖=2to n)Σ(𝑖−1to𝑙=1){ Sin𝛿𝑖,𝑙 /2},…………………………………………………(8) 

 

with 𝛿𝑖,𝑙 = Δ(z𝑖)−Δ(z𝑙) =2𝜋/𝜆 ⟨𝜻, z𝑖 − z𝑙⟩ 

being a random variable ∀𝑖, 𝑙, is dependent on Π and z, but not on 𝜑. The equality holds in (8) at Π = 1 and Π = 2, for 

any Poisson intensity. The inequality in (8) holds for any Poisson intensity, 

not only for the uni-Gaussian intensity defined in Section II-A. If the Poisson process has the uni-Gaussian intensity of 

(1) in Section II, the following mean upper bound of the two-sensor branch-selection reception output is: 

𝐸Π,z,𝜑[max {/C1/
2
,/C2/

2
}] 

 

≤ (𝑠2) = 1+2/𝜋 𝑒−𝑠2/2 {Erfi[√(𝑠2/2
)]}+Σ(𝑘=1to∞) 2(−1)𝑘−1Imag {Erf(𝑘𝜋 − 𝑗𝑠2/(√2𝑠2)}………. ………..(9) 

 

≤ (𝑠2) = 1+2/𝜋𝑒−𝑠2/2[Erfi(√(𝑠2/2
) +Σ(𝑘=1to𝐾−1) 2(−1)𝑘−1Imag {Erf(𝑘𝜋 − 𝑗𝑠2/(√2𝑠2)}   +(−1)𝐾−1 

 Imag {Erf(𝑘𝜋 − 𝑗𝑠2/(√2𝑠2)} +4/𝜋 Φ(−(𝐾𝜋)/𝑠), 𝐾 = 0, 1, 2,……………………………….(10) 

 

where 𝑠2
 = (𝜋/𝜆)2

 (2𝜁𝑥2𝜍𝑥2+2𝜁𝑦2𝜍𝑦2 − 4𝜌𝜁𝑥𝜁𝑦𝜍𝑥𝜍𝑦),………………………(11) 

with Erf(𝑧) = 2/√𝜋 ∫(0 to 𝑧) 𝑒−𝑡
2𝑑𝑡 

 

Erfi(𝑧) = Erf(𝑗𝑧)/𝑗 

 

4/𝜋Φ(−𝐾𝜋/𝑠), 

 

Hence, 

𝑠2 ≈ 2[𝜋 (𝜍𝑥 𝑑𝑠𝑝)/(𝑑1 𝜆)]2(Sin2𝛽)[1 − 𝜌Sin(2𝛽)] 
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for 𝑑1 ≫ 𝑑𝑠𝑝……………………………………………………………………………………..(12) 

 

Moreover, the wider the scatterers’ are spatially spread, the shorter will this 𝑑𝑠𝑝 𝜆 threshold be. This is intuitively 

reasonable: 

The smaller 𝑑𝑠𝑝 or 𝜍𝑥/𝑑1 is, more will the scatterers become effectively spatially concentrated, less will be the phase-

difference between the two sensors, and thus closer to one (i.e. less) will be the expected output power[8]. 

 
4.3. The Tightness Of The Mean Upper Bound Derived In (9) 

 

Monte Carlo simulations of max {/C1/
2
,/C2/

2
} (which involves three random entities Π, z, ᵩ ) will demonstrate the 

tightness of its mean upper bound of (10). 

 

A. Monte Carlo Simulation Approach Using the Bernoulli Approximation & Using Importance Sampling 

The Monte Carlo simulations are conducted as follows: 

(i) The spatial support region will cover [−3𝜍𝑥, 3𝜍𝑥] × [−3𝜍𝑦, 3𝜍𝑦], centered at the point zTx on the x-y Cartesian 

plane. This support region will encompass over 99% of all scatterers, given the uni-Gaussian density in Section II-A. 

Partition this above finite region into 3600𝜍𝑥𝜍𝑦 number of grid subregions, each with area equal to 0.01. 

(ii) To lighten the computational load, approximate the Poisson process Π, on a grid over its support region, by 

Bernoulli trials. This is a common technique in numerical analysis, with this underlying justification: For a sufficiently 

small grid subregion 𝑑z, the Poisson process Π would almost always allow at most one scatterer therein. That 

sufficiently small sub-region would most unlikely contain two or more scatterers. Hence, Π (𝑑z)behaves 

approximately as a Bernoulli random variable, with probability 

𝑝 = (Π(𝑑z) = 1) = Λ(𝑑z)𝑒 −Λ(𝑑z)………………………………………………………………………….(13) 

Hence, for each grid subregion, the Monte Carlo simulation will realize the random variable Π(𝑑z)as Bernoulli(𝑝). 

(iii) To further lighten the computational load, use ”importance sampling” because the Π(𝑑z)of (13) would produce 

mostly zeros, as 𝑝 ≈ 0 in each region 𝑑z. That is, direct simple sampling (of the scatterers’ Poisson density from the 

sufficiently small region 𝑑z) would lead to rare events. However, the variance of rare-event probabilities can be 

significantly 

reduced by applying ”importance sampling” instead of ”direct sampling.” The random variable Π(𝑑z)is realized from 

Bernoulli(𝜅𝑝). Here, 𝜅 = 30 represents a good value to compromise between simulation accuracy and computation 

load[9].  

(iv) Sum all grid subregions’ values of (
z)Π(𝑑z),to evaluate C1. Similarly, sum all grid subregions’ values of(𝜑(

z)−Δ(z))

Π(𝑑z), to evaluate C2. Compute the maximum between 

∣𝐶1∣ 
2,and ∣𝐶2∣ 

2, for this one realization. 

(v) Each loop through steps (i) to (iv) constitutes one Monte Carlo sampling trial. Lastly,  Π,z,𝜑 max{∣𝐶1∣ 
2,∣𝐶2∣ 

2} is 

approximated by the algebraic average of the values of 1/𝜅 max{∣𝐶1∣ 
2, ∣𝐶2∣ 

2}  obtained from 200 independent Monte 

Carlo sampling trials[7]. 

 

Table.4.1. Monte Carlo Simulation Results 

 

FIG. 𝛽 𝜌 𝜍𝑥/𝜆 𝑑1/𝜆 𝑑𝑠𝑝/𝜆 

4 60
0
 0 12 100,             300,             500,                1000 ¼, ½, 2, 10 

5 60
0
 0 24 100,             300,             500,                1000 ¼, ½, 2, 10 

6 60
0
 ½ 12 100,             300,             500,                1000 ¼, ½, 2, 10 

7 30
0
 0 12 100,             300,             500,                1000 ¼, ½, 2, 10 

- - - - - - 

 



International Journal of Advances in Scientific Research  and Engineering (ijasre)           Vol.3 (8)  Sep - 2017 

www.ijasre.net Page 29 
 

For each scenario, 𝑀 = 100 replications of (i) - (v) are performed. The 𝑚th replication evaluates the average (denoted 

as 𝑒𝑚) of the 200 independent Monte Carlo sampling trial values of max{∣𝐶1∣ 2,∣𝐶2∣ 2}.  

This mean upper bound can under-estimate, because it is not an absolute upper bound, i.e. not absolute over all 

realizations of the random entities of Π, z, 𝜑 [10]. 

 

5. CONCLUSION 
Analytically derived for the first time in the open literature is an upper bound of the mean output power of a two-

sensor branch-selection receiver, based on a geometric model of the fading channel. This expression is explicitly in 

terms of the channel model’s three degrees-of-freedom (namely, 𝛽, 𝜌, and 𝜍𝑥 /𝑑1   / ) . Monte Carlo simulations verify 

that the derived mean output power to be accurate to within a very few percentages. 
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