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Abstract 

A fractional-order HTLV type -1 model with transmission from an infected cell to uninfected cell and also through mitosis is 

constructed and investigated. The requirements for the existence of equilibrium points are established. We have generalized the 

integer theorem introduced by LaSalle into the fractional system and given some adequate requirements for the infection-free 

equilibrium plus chronic equilibrium being globally asymptotically stable. We employed a numerical technique established for 

changing the fractional-order derivative to the integer-order derivative to work out the HTLV type- 1 model. Numerical 

simulations are given to illustrate our results. The fractional-order derivatives are defined using the Caputo definition. 
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________________________________________________________________________________________________________ 

1.0 INTRODUCTION 

Human T-cell lymph tropic virus type 1 which attacks the CD4
+
T-cells is more prevalent in Central and South America, the 

Caribbean islands, Africa and in Japan [1, 2]. Today it is estimated to infect up to 20 million people around the world [3, 4]. 

Currently, no proven direct treatment or cure  for Human T cell lymph tropic virus type 1 has been found nor a vaccine to prevent 

it and there is neither an adequate treatment for Human T cell lymphotropic virus type 1 associated pathologies [4] . During the 

lifetime of people who carry HTLV type 1 will develop the following diseases; Tropical spastic paraparesis/HTLV associated 

myelopathy (TSP/ HAM) and Adult T-cell leukemia/lymphoma (ATL) [5].  

A high percentage of the estimated 20 million carriers of the HTLV-1 virus will not become symptomatic during their lives. The 

small percentage remaining which is less than 3% of people with HTLV type 1 develops Tropical spastic paraparesis/HTLV 

associated myelopathy (TSP/ HAM) [5]. The most efficient manner in which the virus is transmitted is through blood or blood 

products. Since the cell free virions are almost undetectable in vivo in the peripheral blood, the percentage of peripheral blood 

mononuclear cells that carry an integrated copy of the viral genome in an individual infected with HTLV-1, called the proviral 

load, is a measure of the viral burden. A proviral cell is an infected cell containing viral DNA while the provirus is an integrated 

viral DNA within an infected cell. About 90–95% of the proviral load in chronic HTLV-1 infection is carried by CD4
+
T-cells and 

about 5–10% is carried by CD8
+
 T-cells, [6, 7, 8]. 

HTLV-1 transmission primarily happens through two routes:  

 Horizontal transmission – which is the spread of the provirus through cell-to–cell contact [9].  

 Clonal expansion, which would actively advance cell division of infected cells. This route is known as vertical or mitotic 

transmission. 

HTLV type 1 infection in an individual is assumed to occur in two stages; first the HTLV type 1 is believed to first spread via 

infected lymphocytes, mainly CD4
+ 

helper T-cells, and thereafter by clonal expansion of cells which are infected [8]. 

Mathematical approaches and experimental approaches have been combined to propose a model of HTLV-1 persistence in order 

to identify the fundamental mechanism of HTLV-1 persistence in vivo and the key factors defining the HTLV type 1 provirus load 

and the disease danger [2].  

It has been noticed that replication of the virus mainly occurs through mitosis and HTLV type 1 protein, especially Tax, needs to 

be expressed so that expansion of cells that shelter a provirus are selectively promoted, though expression of viral protein Tax 

occur in minority of cells which are infected [10, 11].  
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It was also noticed that the level of expression of tax mRNA by cells of CD4
+
T is greater in TSP/ HAM patients than in those who 

carry the virus asymptotically; therefore there is an association between rate of high expression of viral protein and a high 

probability of developing HAM/TSP disease, and Tax expression is a significant predictor of the disease [12]. 

Most of the models that have been formulated have investigated the persistence and pathogenesis of HTLV-1 infection on cells of 

CD4
+
T. Mathematical models that take into consideration the two major routes of transmissions have also been established to give 

the description of the interaction in vivo among HTLV-1 [9, 13, 12, 14].  

An  integer order model with three sections; healthy CD4
+
Tcells, latently or inactively infected CD4

+
T-cells, and of Tax-

expressing infected CD4
+
T-cells has been formulated to examine the dynamics of the HTLV-1 infection.[15]   . 

From the above research done, it is evident that a lot of research needs to be done to understand the dynamics of HTLV-1. In this 

research, we carried out a study on dynamics of a fractional order HTLV-1 infection model consisting of cell – to- cell contact and 

mitotic infectious routes. We modified work done in [15] mainly because fractional order models possess memory while integer 

order models do not. 

2.0 FORMULATION OF HTLV-1 FRACTIONAL MODEL 

In this category, we take into consideration HAM/TSP alone among nonmalignant HTLV type 1 infection diseases; the 

dynamics of ATL and other aggressive malignancies may be rather dissimilar. Even though mitotic division takes place 

naturally in all CD4
+
T-cells, natural homeostatic proliferation takes place at a very slower rate in healthy and latently infected 

CD4
+
T-cells than that of selective mitotic division in Tax-expressing infected cells. Therefore due to this we overlook the 

effects of passive homeostatic proliferation of the healthy and latently infected CD4
+
T-cells to make the model simple. The 

fractional order model is as follows;  

D
α
x1(t)= λ−βx1(t)x3(t)−   x1(t), 

D
α
x2(t) = σβx1(t)x3(t)+ ԑrx3(t)–τx2(t)     x2(t),  ………………(2.1) 

D
α
x3(t)=τx2(t) + (1−ԑ)rx3(t) −  x3(t),                                                                         

Where 

x1(t), x2(t)  and x3(t)- represent the number of healthy CD4
+
T-cells, the number of the latently infected CD4

+
T-cells 

and the number of Tax-expressing infected CD4
+
T-cells at time t  respectively. 

λ- is the constant birth rate of healthy CD4
+
T-cells. 

   ,   and   - represent the natural death rate of healthyCD4
+
T-cells, resting infected CD4

+
T-cells and Tax-

expressing infecting CD4
+
T-cells, respectively. 

β-is the transmission coefficient among CD4
+
T-cells. 

σ- is the fraction of newly infected cells from infectious transmission that survive the immune attack and 

subsequently silence Tax expression hence becoming latently infected σ∈(0,1). 

(1-σ)-is the fraction of newly infected cells from infectious transmission that die off due to immune attack. 

τ – is the proportion of latently infected cells expressing Tax hence becoming actively infected. 

r -is the rate of mitotic transmission of HTLV-1 involving selective clonal expansion of the Tax-expressing CD4
+
T-

cell. 

ԑ-is the fraction of newly infected cells via mitotic transmission that hides Tax expression hence becoming latently 

infected. ԑ∈(0,1). 

(1-ԑ)- is the fraction of newly infected cells via mitotic transmission that express Tax hence remaining in the Tax-

expressing infected CD4
+
T-cell compartment. 

3.0 FRACTIONAL ORDER MODEL ANALYSIS 
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The caputo version of fractional order derivative is employed in this paper  

The fractional derivative of a function g defined in Caputo way is  

D
α
g(x) = I

n-α
D

n
g(x)  =

 

         
∫                
 

 
dt,      t > 0,  n−1 < α < n and n ∈ N 

3.1 The Existence of a Unique Solution 

The following Lemma is considered so as to prove that the solution is unique. 

Lemma 3.1.1 [16]. Supposing function g : R
+
 ×R

3
 → R

3 
in vector form conforms to the conditions (1) to (4) as stated below: 

(1) g(t,X(t)) is a function which is measurable with Lebesgue measure in relation to on ∈ R
+
 ; 

(2) g(t,X(t)) is a function which is continuous in relation to X(t) on R
3
 ; 

(3) Partial differential of        with respect to x is continuous in relation to X(t) on R
3
. 

(4) ∥g(t,X)−g(t,Y ) ∥ is less or equal to L ∥ X−Y ∥, for all t ∈ R
+
, X,Y ∈R

3
. 

Therefore 

D
α
X(t) = g(t,X(t)), 

X(0) = X0, with 0 < α ≤ 1        have a unique solution. 

Theorem 3.1.2 The model (2.1) has a solution X (t) = [x1(t),x2(t),x3(t)]
T
 at t is greater or equal to  zero and the solution is unique 

and will stay in   
 . 

Proof:  Proving first that for all [x1(0), x2(0), x3(0)] belonging to   
 , model (2.1) has a solution which is unique. It is clear that 

the vector function g of model (2.1) satisfies the first, second and third conditions of Lemma 3.1.1.  

Then proving that model (2.1) satisfies the fourth condition of Lemma 3.1.1. Therefore model (2.1) turns out to be  

D
α
X(t) = A1X(t) + x1A2X(t) + A3, where  

 A1 = (

      
         
     

),    A2 =(

    
     
        

) and  A3 =  (
 
 
 
) 

Let g(t,X(t)) = A1X(t) + x1A2X(t) + A3, therefore 

∥g(t,X(t))−g(t,Y (t)) ∥ 

 = ∥ A1(X(t)−Y (t)) + x1A2X(t)−x1A2Y (t) +x1A2Y(t)−y1A2Y (t) ∥ 

 ≤ (∥ A1∥ + ∥ x1∥∥ A2∥ + ∥ A2∥∥ Y (t) ∥) ∥X(t)−Y (t) ∥ 

 = L ∥X(t)−Y (t) ∥, 

Whereby ∥X(t) ∥ is equal to Σ
3

i=1   ∑     
   t | xi(t) |  

And L is equal to∥ A1∥ + ∥ A2∥ (∥ x1∥ + ∥ Y (t) ∥). 

Model (2.1) has a solution which is unique based on Lemma 3.1.1 

 

3.2 The Existence of Non – Negative Solutions 

The following two Lemmas are considered so as to prove that the solution is positive. 

Lemma 3.2.1 [17]: 

Assuming g(z) ∈ C[a,b] as well as D
α
g(z) ∈ C[a,b] for 0 < α ≤ 1 
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Therefore,       g(z) = g(a) + 
 

       
  D

α
g(ξ)(z−a)

α
 , 

                    With a < ξ <z, for all z ∈ (a,b], 

Lemma 3.2.2 [17]:  

Assuming g(z) belongs to C[a,b] as well as  D
α
g(z) belongs to C [a,b] for 0 < α ≤ 1 therefore; 

 g(z) is always non decreasing for every z belonging to [a,b] provided that D
α 

g(z) is greater or equal to zero, for all z 

∈ [a, b]. 

 g(z) is always non increasing for every z belonging to [a,b] provided that D
α 

g(z) is less or equal to zero, for all z ∈ 

[a, b]. 

We then prove that the solution of model (2.1) is positive at all times.  

Based on model (2.1) we have  

D
α
x1(t)|x1=0= λ ≥ 0, 

D
α
x2(t)|x2=0= (σβx1+          ≥ 0, 

D
α
x3(t)|x3=0= τx2 ≥ 0. 

The solution will stay in   
  based on Lemma 3.2.1 and also lemma 3.2.2.  This is because from the two lemmas we know that if 

the solutions of model (2.1) when t is equal to zero  is non-negative (i.e initial conditions are not negative), the solutions of model 

(2.1) when t is greater than zero is also non- negative and the solution will stay      
 . 

3.3 The Existence of Equilibrium Points  

In this section, we deliberate on the existence of equilibrium points of the mathematical model (2.1). The basic reproductive 

ratio of mathematical model (2.1) which represents the mean figure of newly infected cells as a result of  an infection by an 

actively infected CD4
+
T-cell at the start of the infectious process is stated as shown below 

R0 =  
    

               
 

   

          
+
      

   
 

R0 comprises of two segments corresponding to; 

 Average number of secondary infection caused by horizontal transmission     R01 = 
    

          
 

 Average number of secondary infection caused by mitotic transmission                 R02 =
   

        
 

      

  
. 

Assumption of the model:  

   <
        

         
  (to maintain the boundedness of the solution of the model). This demands that the average number of 

the secondary infection caused by amitotic transmission must on no account be above one i.e 
   

        
 

      

  
< 1. 

Failure for this inequality to hold, then the number of infected cell may rise to infinity 

Two relevant equilibrium points are obtained from model (2.1) when calculation is done directly. 

(i) Model (2.1) has an infection-free equilibrium (IFE) when R0  < 1 

IFE (E0)= (  , 0, 0),    where    = 
 

   
 

implying that the infected CD4
+
cells are cleared 

(ii) There exists an endemic equilibrium (EE) for model (2.1)  when R0  > 1, 

EE (E1)= (  
 ,   

    
 ), where, 

   
 = 

 

   
     

,         
 =  

              
 

 
       and       

 = 
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3.4 The Global Stability of the Equilibrium Points 

In this section, the conditions that are appropriate for the globally asymptotical stability of fractional system which generalize 

the result for ordinary differential equations are first given. Secondly we shall determine the global asymptotical stability of 

E0 and E1 of model (2.1).  

Suppose Ω is an open subset of N dimensional R space (R
n
).Let us take into consideration the autonomous system below 

D
α
x(t) = g(x). ………………………………….. (3.1) 

 Considering V belongs to C
1
(Ω, R

n
),we express the order α of the derivative of V (x) alongside the solutions of equation (3d) as 

the  form below 

D
α
V |(5) = I

1−α
 DV|(5)= I

1−α(
  

  

  

  
), where 0 < α ≤ ………… (3.2) 

We put forward the following important two lemmas so as to give conditions that are appropriate for the globally 

asymptotical stability of infection-free and the endemic equilibria. 

Lemma 3.4.1 [18] Assuming D is a set which is closed and bounded with respect to D
α
x(t) = g(x). Every solution of D

α
x(t) 

= g(x) begins from a point in D and stays in D at all times.  

Let V: D → R be a function having first partial derivatives which are continuous such that D
α
V |(5)≤ 0 $ Let E be a set of all 

points in D where D
α
V |(5) = 0 i.e E = {x ∈ D| D

α
V |(5) = 0}.  

Let M be the largest invariant set in E i.e M = {x ∈ E| D
α
x(t) = g(x) }. Therefore each solution of function x of t beginning in 

D approaches M as t tends to infinity. For example, if M is equals to zero, therefore x tends to zero, as t tends to infinity. 

Lemma 3.4.2 [19] supposing function x of t belongs to a set of all positive real numbers and is continuous as well as derivable. 

Therefore, for any time instant t ≥ t0, x* 

  
 (x(t)− x*− x*

       

  
) ≤ (1− 

  

    
)  

 x(t),    x*belongs to a set of all positive real  numbers, for all α belonging to 

(0,1). 

A. Global asymptotical stability of Infection-free Equilibrium  

In this section we investigate the stability of Infection free equilibrium (IFE) 

Theorem 3.4.3 The infection-free equilibrium E0 is globally asymptotically stable whenever R0 <1. 

Proof: Defining the function of Lyapunov V1 of t in the way below 

V1(t) = x1(t)−  −  
       

  
+ 

 

      
x2(t)+x3(t). 

Computing the time derivative of the function V1of t alongside solutions of mathematical model (2.1), we get 

D
α
V1(t) ≤ (1− 

  

     
)   −   x1(t)−βx1(t)x3(t)] 

+
 

      
[                      

+ [                   

               D
α
V1(t)= −    

           
 

     
 +  x3(t)(R0 −1). 

Notice that D
α
V1(t) = 0 as long as x1(t) =     and x3(t) = 0. By the second equation of model (2.1), we also have x2(t) = 0. 

Therefore, by the invariance principle introduced in [20], equilibrium E0 turns out to be globally asymptotically stable. 

B. Global asymptotical stability of Endemic Equilibrium. 
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Theorem 3.4.4 The endemic equilibrium (EE) is globally asymptotically stable whenever R0>1 

Proof: Defining the function of Lyapunov V2 of t in the way below 

V2(t) = x1(t)−  
 −  

          

  
  + 

   
 

    
   

  x2(t)−  
 −  

          

  
 ] 

+ [(x3(t)−  
  −  

          

  
  . 

Computing the derivative of the function V2 of t alongside solutions of mathematical model (2.1), we get 

D
α
V2(t) ≤ (1− 

  
 

      
 )[    

     
   

 −   x1(t)−βx1(t)x3(t)] 

+ 
   

 

    
   

 (1− 
  
 

      
)[                      

+ (1− 
  
 

      
)                    

= -   
         

   

     

 

+    
   

 [ 2 - 
  
 

     
 

          

  
   

   

+     
 [ 2- 

  
 

     
  

  
           

  
   

      
  

When R0 > 1, notice that D
α
V2(t) ≤ 0 and D

α
V2(t) = 0 as long as x1(t) is equal to   

 , x2(t) is equal to   
  and      is 

equal to   
 . 

By the invariance principle introduced by La Salle, E1 turns out to be globally asymptotically stable. 

3.5. Numerical Technique 

To find solutions to the system (2.1), we will employ a numerical technique that was developed and introduced in [21, 22] to 

find solutions of fractional-order nonlinear differential equations (FDE’s). In [21] it was shown that the fractional derivative 

defined in Caputo way of a function g of t with α as the order which satisfy 0 < α < 1 may be expressed as 

D
α
g(t) = 

 

      
{ 

       

      

 as follows 

 

  
Bk(g) = −(k−1)t

k−2
g(t), k [1 + ∑

          

         

 
   ]    

−[
    

  
 g(t) +∑

          

             

 
    (

     

  
 +

         

       ]}, 

Where, 

Bk(g)(t) = −(k−1)∫  
 

 
k−2

g(τ)dτ, k=2,3,4··· ,  ……………………………..  (3.4) 

And having the properties = 2,3,4··· . …………………………………… (3.5) 

We approximate D
α
g(t)  by using M terms in sums appearing in (3.3) as follows: 

D
α
g(t) = 

 

      
{ 

       

     [1 + ∑
          

         

 
   ]                                              

−[
    

  
 g(t) +∑

          

             

 
    (

     

  
 +

         

       ]}, 

Equation (3.6) can be modified in the form as follows: 

D
α
g(t) ≃ Q(α,t,M)f

(1)
(t) +Y(α,t,M)g(t)+∑          

   
         

      , …………  (3.7) 

………………. (3.3) 

………………. (3.6) 

http://www.ijasre.net/
file:///E:/ijasre-19/vol%205-5/published%20papers/www.ijasre.net
http://doi.org/10.31695/IJASRE.2019.33561


International Journal of Advances in Scientific Research and Engineering (ijasre), Vol 5 (10), October-2019  

 

www.ijasre.net             Page 257 

DOI: 10.31695/IJASRE.2019.33561 

Where, 

Q(α,t,M) =
  ∑

         

        
 
   

          , 

R(α,t) =  
   

        
    

A(α,t,k) = − 
             

                    
  

Y(α,t,M) = R(α,t) +∑
        

  
 
   . 

We set 

H1(t) = x1(t), 

HM+1(t) = x2(t), 

H2M+1(t) = x3(t), 

Hk(t) = Bk(x1)(t), 

HM+k(t) = Bk(x2)(t), 

H2M+k(t) = Bk(x3)(t),               k = 2,3,4··· . 

 Model (2.1) can be modified in the form as follows 

Q(α,t,M)  
 (t) + Y(α,t,M)H1(t)+∑   

   (α,t,k)
     

       

=  λ−βH1(t)H2M+1(t) −  H1(t) , 

Q(α,t,M)    
 (t) + Y(α,t,M)HM+1(t)+∑    

   (α,t,p)
       

       

= σβH1(t)H2M+1(t) +ԑrH2M+1(t) -τHM+1(t) –  HM+1(t), 

Q(α,t,M)     
 (t) + Y(α,t,M)H2M+1(t)+∑    

   (α,t,k)
        

       

= τHM+1(t)+(1−ԑ)rH2M+1(t) −  H2M+1(t),    

 

 

Where,    Hk(t) = −(k−1)∫     

 
H1(τ)dτ, 

HM+k(t) = −(k−1)∫      

 
HM+1(τ)dτ, 

H2M +k(t) = −(k−1)∫      

 
H2M+1(τ)dτ,         k = 2,3,4···M.                     

 

 

 

Equations (3.8) and (3.9) can now be rewritten in the form as follows 

  
 (t) =

 

        
 [λ−βH1(t)H2M+1(t) −  H1(t) 

−Y(α,t,M)H1(t)− ∑   
   (α,t,k)

     

        , 

  
 (t) = −(k−1)t

k−2
H1(t), k = 2,3,4···M, 

    
 (t) = 

 

        
 [σβH1(t)H2M+1(t) +ԑrH2M+1(t) -τHM+1(t) –  HM+1(t) 

………….. (3.8) 

……..……... (3.9) 

………. (3.10) 
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−Y(α,t,M)HM+1(t)− ∑    
   (α,t,k)

       

      ], 

    
 (t) = −(k−1)t

k−2
HM+1(t), k = 2,3,4···M, 

     
 (t) = 

 

        
 [τHM+1(t)+(1−ԑ)rH2M+1(t) −  H2M+1(t) 

−Y(α,t,M)H2M+1(t)− ∑    
   (α,t,k)

        

      ], 

     
 (t) = −(k−1)t

k−2
H2M+1(t), k = 2,3,4···M,                                

Having initial conditions as follows: 

H1(ψ) = x1(0), 

Hk(ψ) = -
   

 
 ∆t

k−1
x1(0), 

HM+1(ψ) = x2(0), 

HM+k(ψ) = −
   

 
 ∆t

k−1
x2(0), 

H2M+1(ψ) = x3(0), 

H2M+k(ψ) = −
   

 
 ∆t

k−1
x3(0),             k = 2,3,4···M.                        

In chapter four, we consider the numerical solution of system of ordinary differential equation (3.10) having initial conditions 

(3.11) by using the famous and widely used Runge-Kutta method of fourth order. 

4.0. NUMERICAL SIMULATIONS  

Numerical simulations for the system (2.1) were conducted to confirm the validity of the results attained. All the differential 

equations are solved by using Runge-Kutta method of fourth order. 

Each parameter is assumed to be non-negative in cubic millimeters per day in entire numerical runs. Approximations of 

values of parameter were done using both theoretical and experimental techniques in CD4
+
 lymphocyte kinetics studied in 

[23].  

Table 4.1Appropriate values of parameter 

Parameter Range of value per day Descriptions Source 

λ 15 to 25 cells per mm
3
 Rate at which healthy CD4

+
 cells are 

produced 

 [23] 

β 0.0005 to 0.003 cells per mm
3
 Infectious transmissibility coefficient [23] 

r 0.04 to 0.4  Rate at which actively infected cells 

expressing Tax selectively proliferate 

[23] 

 

σ 0 to 1 Portion of proviral cells from infectious 

transmission that are alive 

[23] 

 

ԑ 0 to 1 Portion of proviral cells from mitotic 

transmission that are alive 

[23] 

 

τ 0.0003 to 0.03 Rate of spontaneous Tax expression [23] 

   0.01 to 0.05 Rate at which  healthy cells  die naturally [23] 

   0.01 to 0.05  Rate at which latently infected  cells die 

naturally 

[23] 

   0.01 to 0.05  Rate at which actively infected cells die 

naturally 

[23] 

……...... (3.11) 
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Figure 4.2: The above graphs display the approximate results of system (2.1). Approximation of the results were done at ψ = 

∆t = 0.01. The parameter values are α = 0.65, 0.75, 0.85, 0.95, λ = 20, β = 0.001, σ = 0.01, ԑ= 0.9, r = 0.05, τ = 0.03,   = 1/30, 

  = 1/30,   = 0.05, and M =10 and the initial conditions   (0) = 10,   (0) = 2.5,   (0) = 1.5. By direct computation,   = 

0.5832< 1, therefore disease-free equilibrium    = (600, 0, 0) is globally asymptotically stable as demonstrated in the graphs. 

From the figure it can be seen that as alpha increases the trajectories of the solutions of the model near the integer-order 

ordinary differential equation. 
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Figure 4.3: The above graphs display the approximate results of system (2.1). Approximation of the results were done at ψ = 

∆t = 0.8, choosing λ = 20, β = 0.001, σ = 0.1, ԑ =0.8, r = 0.1, τ = 0.03,   = 1/30,  = 0.02,   = 0.09, and M = 10 and the initial 

conditions   (0) = 1000,   (0) = 250,   (0) = 150. By direct computation,    = 1.1556 > 1, therefore endemic equilibrium 

  = (366.6258, 49.5091, 21.2182) is globally asymptotically stable as demonstrated in the graphs. From the figure it can be 

seen that as alpha increases the trajectories of the solutions of the model near the integer-order ordinary differential equation. 

http://www.ijasre.net/
file:///E:/ijasre-19/vol%205-5/published%20papers/www.ijasre.net
http://doi.org/10.31695/IJASRE.2019.33561


International Journal of Advances in Scientific Research and Engineering (ijasre), Vol 5 (10), October-2019  

 

www.ijasre.net             Page 261 

DOI: 10.31695/IJASRE.2019.33561 

5.0 CONCLUSION 

In this research, we have formulated a fractional order HTLV-1 model incorporating mitotic transmission and cell-to-cell 

transmission of the virus. The suggested model is significant since fractional order systems have memory and the core feature of 

immune response constitutes memory. We carried out global stability analysis and it showed that  infection-free equilibrium  is 

globally asymptotically stable if R0 < 1 , meaning the infection will eventually be no more, and when R0 >1, the endemic 

equilibrium  is globally asymptotically stable, meaning the infection will carry on. 

Numerical operations were executed to illustrate the theoretical results. The aftereffect of parameter α which is the order of 

system of equation (2.1) on the epidemic dynamics was discovered. Figures.4.2 - 4.3 demonstrate that; increase in α cause the 

curves of the mathematical model to near the integer-order ordinary differential equation.  

6.0 RECOMMENDATION  

Examining the results found in this research, the convergence rate of the numerical results of mathematical model (2.1) for 

diverse values of α could be achieved also. Also in majority of biological models, time delay is taken into account for the aim 

of illustrating the phenomena being studied accurately. In that case, studying global asymptotic stability of equilibria for 

delayed fractional order HTLV-1 model is going to be a really worthy as well as crucial thesis. 
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