

International Journal of Advances in Scientific Research and Engineering (ijasre)

E-ISSN: 2454-8006

DOI: http://doi.org/10.31695/IJASRE.2018.32975

Volume 4, Issue 11 November - 2018

A Novel Design for an all Terrain Custom-Built Vehicle Dynamics

Pranav Jayaram¹, Nagireddy Bharath² and Rameez Ahmed²

²Department of Mechanical Engineering

¹Department of Electronics and Communications Engineering

Dr. Ambedkar Institute of Technology

Bangalore, Karnataka

India

ABSTRACT

Rally vehicle dynamics design is a quintessential part of motorsports in today's do-it-yourself world. An aspiring hobbyist aims to design and implement a robust build which is simulated initially using software tools and furthermore, developed as a large-scale manufacturable product. This report aims to discuss the ABC's of a professional vehicle build which incorporates the use of all the aforementioned features of development. Consequently, the final build is an integration of many modern and futuristic features and hacks that are supposedly a niche requirement in today's automobile industry. The features highlight the modifications and improvements to the essential sub-systems of a typical commercial vehicle. Subsequently, the vehicle can then be used in rallying, off-roading and as a means of transportation in rugged and tough terrains.

This report elaborates a basic proof of concept of the features thereby implementable, a design summary of the wholistic build of such a vehicle, the adaptations performed and a conceptual generalized calculation that can be implemented on any generic vehicle. Some of the features elaborated are: On-demand drive change mechanism, Independent wheel braking system, An On-board diagnostics tool which is configurable to any required engine specification and a contrast of independent and partially dependent suspension.

Key Words: Rally-car, Vehicle, Design, Motorsport, Retrofit, Mechanism.

1 INTRODUCTION

Designed to conquer the challenges of any terrain, the vehicle consists of a powerful 800cm³ engine which uses an automatic transmission. The engine manifests a dual cylinder, liquid cooled, 4 stroke Double overhead camshaft (DOHC) which uses a timed ECU controlled Ignition. The perceptible dimensions of the vehicle [1] include a length of 105in, breadth of 60in, a height of 70in and as estimated Kerb weight of 470kg. The suspensions [2] integrate Front Suspension: Independent dual A-arm with anti-sway bar which produces a 15in wheel travel, Rear Suspension: Semi-trailing arm with anti-sway bar which produces a 23in wheel travel. The dynamicity of the suspension height is brought about by the shock preload CAM adjustment mechanism which inherits an extended length of 16.32in and a compressed length of 11.01in. Wire Diameter: 0.48in with a spring weight of 1.919kg. The transmission used of an Inline F/N/R type. The tires used are thereby chosen with dimensions, Front: 25x8x12, Rear: 25x10x12. As opposed to groove-surfaced tires, button-surfaced tires are employed which exhibit maximum traction in marshy terrains. Braking incorporates an outboard hydraulic system mounted on a 220mm front rotor and a 180mm rear rotor that works on an H-split mechanism [3]. Any typical generic steering is employed that includes a Rack and Pinion [4] which has a steering ratio of 7:1 and provides a Turning Radius of 3.12m.

2 CAD (COMPUTER AIDED DESIGN) AND ANALYSIS

CATIA (Ver: V5R20), a professional automobile design tool was employed in the structural design for the tubular-chassis of the vehicle for accuracy and precision. A contrast of analysis was performed using CATIA which was commensurable with the same using ANSYS.

2.1 CHASSIS DESIGN

The frontal and side impact typically endures the maximum amount of stresses [1] [2] during a collision for which, an impact was simulated for the chassis design adhering to Newton's Second Law of Motion. The forces analyzed proved to be within the safety range for a practical implementation of the vehicle.

CAD MODEL	FEA (CATIA) [6]	RESULTS
1.Isometric View		RANGE
		0.202 - 0.182
		0.182 - 0.162
		0.162 - 0.141
	ASPACE -	0.141 - 0.121
		0.121 - 0.101
		0.101 - 0.0808
	KA S	0.0808 - 0.0606
	1 DA	0.0606 - 0.0404
(0)		0.0404 - 0.0202
	A A A	2 - 0
2.Side View		RANGE
	A	0.0374 - 0.0336
	1 Actor	0.0336 - 0.0229
	ACCESSION OF	0.0229 - 0.0262
		0.0262 - 0.0224
	Sec. Drivery	0.0224 - 0.0187
		0.0187 – 0.015
	TANK I	0.015 - 0.0112
	(ASSI)	0.0112 – 0.00748
	KAPAN A	0.00748 - 0.00374
	A A A	0.00374 - 0

Figure 1 DARK BLUE: MINIMUM DEFORMATION RED: MAXIMUM DEFORMATION

2.2 SUSPENSION DESIGN

In an off-road vehicle [1], the suspension design [2] [3] [1] is of paramount importance as they endure the majority of forces thereby, The A-arms, semi-trailing arms, and the knuckle have been independently designed to endure multiple loads individually.

FEA MODEL	RESULTS			
A-ARM	RANGE			
ANSTS	2053.4 -1825.3			
	1825.3-1597.1			
	1597.1-1369			
	1369-1140.8			
	1140.8-912.64			
	912.64-684.48			
	684.48-456.32			
410 100 (n)	456.32-228.16			
2.56/ 1.56/	228.16-1.167e-6			
TRAILING ARM	RANGE			
ADS13	4.1146e-8 - 3.6574e-8			
	3.6574e-8 - 3.2002e-8			
	3.2002e-8 - 2.7431e-8			
	2.7431e-8 - 2.2589e-8			
	2.2589e-8 - 1.8287e-8			
	1.8287e-8 - 1.3715e-8			
in the second	1.3715e-8 - 9.1436e-9			
8.000 5.000 12.000 (ed) 2.590 7.500	9.1436e-9 - 4.5718e-9			
	4.5718e-9 - 0			
KNUCKLE	RANGE			
ANSYS	0.0017204-0.0015292			
	0.0015292-0.0013381			
	0.0013381-0.0011469			
	0.0011469 – 0.00095577			
	0.00095577 – 0.00076462			
T	0.00076462 - 0.00057346			
.1	0.00057346 - 0.00038231			
	0.00038231 - 0.00019115			
	0.00019115 - 0			

Figure 2 DARK BLUE: MINIMUM DEFORMATION RED: MAXIMUM DEFORMATION

3 THEORETICAL SUBSYSTEM DESIGN

SUB-SYSTEM	CALCULATIONS	SPECIFICATIONS [1]
TRANSMISSION	• Minimum gear	Tire radius = 305mm
	[1]ratio=7750/552=14.04=a*b*c=4*4.86*.75	Circumference=1.963m
	where a=ratio of open differential ,b=ratio of	Max Torque=34Nm @
	Torsen Differential ,c=min ratio of PVT	7000rpm
	• Maximum gear ratio =a*b*3.86=72.25	PVT will lock at 2500rpm
	• Maximum torque available=max gear ratio	Torque at 2500rpm = 21Nm
	*21= 1642.39Nm @2500rpm	PVT max ratio=3.86:1 min
	Actual torque	ratio=1:0.75
	available=1642.39*.85=1396.43Nm@25000rpm	Mechanical efficiency =85%
	Minimum speed	

International Journal of Advances in Scientific Research and Engineering (ijasre), Vol 4 (11), November - 2018

	The caliper:
	F clamp=2 X Fcaliper =2 X 3360=6720N
	The brake pads:
	Ffriction=F clampX μ bp disc 06 Co-efficient of
	friction of brake 0.7
	Based on the materials in contact 07
	Tandem master cylinder bore x stroke 19.05mm
	x17.05mm - 08 Stopping distance
	10.71m - 09
	Weight transfer 0.37695 or 37.695% - µ bp=0.7
	F clamp = 0.7 X 6720 = 4704 N
	The rotor:
	The forgue on the wheel is equal to the forgue on
	the rotor
	Therefore Tr. Tr. Efficience Deff. Etcare Y
	Intereore, $\Pi = \Pi w$ Finction x Ref = Figure A Define Etyme (recer) = 0.5 w max w (c2 /l) Etyme
	(rear) = 1124.275 N D t = Effective relling radius
	(1ear) = 1154.575 N R $t = Effective forming radius$
	of the type = 0.516 m 4200 X Ref = 1134.575 X $0.2165 \text{ D}_{\text{eff}} \text{ D}_{\text{eff}} = 1124.275 \pm 0.2165.4200$
	$0.5105 \text{ KeII KeII} = 1134.575 \times 0.5105 4200$
	So the size of the rotor = 180mm Ftyre (front) = $0.5 \text{ mms } \text{m} (s1.4)$ Etyme (front) = $1.015 \text{ 5} \text{ C}$ N Bt
	$0.5 \times \text{mg} \times (a1 / 1)$ Ftyre (front) =1615.56 N Rt =
	Effective rolling radius of the tyre = 0.316 m
	4200 X Reff
	$=1615 \times 0.3165 \text{ Reff} =115$
	So the size of the rotor = 240 mm Ftotal = $(2 X)$
	1134.75) + (2 X 1615.36) = 6166.62 N
	Deceleration of a vehicle in motion [3]
	Av = Ftotal $m = 6166.62 550 = 11.23 \text{ m/s2}$
	Stopping distance of a vehicle: $SDv = v2 \ a \ x \ 2$
	V = 56 kmph = 56 X (5/18) m/s2 SDv = 15.55 x
	15.55/(11.23 x 2) = 10.17 m
	Vehicle static weight distribution Percent front
	weight = Vf Vt X 100 = 226.872x100 550 =
	41.25 Percent rear weight = Vr Vt
	X100=323.125X100 550 =58.75 Dynamic
	impacts of vehicle experiencing deceleration:
	WT = (Av/g) x (hcg/WB) x V t = 0.37695
	The dynamic weight of the vehicle is $= 37.695$
	%
ELECTRICAL LAYOUT	
L POWER OF	
POWER SU	
[e] [
	arter
	Killswitch1

Ignition switch

The basic Electrical layout consists of a main control system that performs tasks which a re interruptible and noninterruptible. The interruptible mechanism is used to switch flashers, indicators and lamps. The uninterrupted mechanism has reverse lights, alarm systems and safety features. The Onboard diagnostics unit and the Camera and display module were also utilized in the same controller task schedule. Kill Switches were used for safe turn-on and turn-off.

4 PRACTICAL IMPLEMENTATION

4.1 Advancement In Conventional Designs

a) On-demand drive change mechanism: Conventionally, the driver had to stop the vehicle to shift from an RWD to a 4WD. Similarly, an AWD vehicle was an all-time AWD vehicle. As opposed to this, this rally car mechanism changes from RWD to AWD dynamically on-demand providing momentum while shifting and better torque. The mechanism so used is an arrangement of a brake system and a centrifugal clutch in a strategic manner so as to restrict power to the front wheels and supply the same when required. The RWD provides better acceleration whilst the AWD provides better torque vectoring for steering.

The brake system restricts the power by holding the shaft, consequently, the clutch disengages and the power is supplied only to the rear wheels. When required, the brake system disengages and the centrifugal clutch is engaged whilst providing a smooth flow of undeterred power.

b) Dual Suspension mode: Conventionally, a manufactured vehicle used either a dependent or an independent suspension which contrastingly provided advantages and limitations. This mechanism used in the rally car utilizes the above modes on terrain demand. Based on speed requirements, for steady cruising over a rugged terrain, an independent suspension is adapted. However, a dependent suspension is used for articulation. This mechanism uses a simplified dog-clutch which is used over the anti-sway bar for a vehicle with independent suspension.

International Journal of Advances in Scientific Research and Engineering (ijasre), Vol 4 (11), November – 2018

- c) Independent Braking: In the rally car design, the advantages of an AWD and a 4WD vehicle are integrated using independent wheel braking which serves the purpose of torque-vectoring in a high-speed rally and an optimum power distribution to the wheels when required in a slow trail. Individual brakes were employed so as to perform the limiting of excessive power in case of a wheel slip utilizing cutting brake technology.
- **d**) **Onboard diagnostics platform:** The rally car has an onboard data acquisition unit which procures sensory data at about 2000 samples per minute. The sensor data is generated from IMU and ambient temperature and humidity sensors. The GY-521 is used for acquiring speed, tilt, and acceleration whereas the DHT11 sensor is used to acquire Temperature and Humidity data. The sensors are mounted in strategic locations such as the DHT11 sensors are mounted near the Engine, Exhaust, Fuel Tank and to measure ambient temperature and humidity. This data obtained in processed via, an onboard processor which runs a Linux based operating system. This data is then sent to the cloud and can also be remotely checked for real-time applications customizable in the future.

4.2 VEHICLE PROTOTYPE

Figure 4. VEHICLE PROTOTYPE 1. TRANSMISSION 2. SUSPENSION 3. STEERING 4. BRAKING 5. ELECTRICAL LAYOUT

4.3 DFMEA (DESIGN FAILURE MODE EFFECT ANALYSIS)

SL.NO	FAILUREMOD	FAILURE	FAILURE	S	0	D	RP	PREVENTIVE
	Е	CAUSE	EFFECT				Ν	ACTION
1)	Bending and	Axial stress	Overall damage	0	0	0	32	Material with an
	braking of frame	exceeds yield	to the roll cage.	8	2	2		appropriate factor of
		stress of material	Frame breaks					safety and effective
		due to excess	or bends.					design, analysis and
		load and impact	Driver's safety					constant testing.
		loading	is endangered					
2)	Structural failure	insufficient	Damage to	0	0	0	72	Choose a material
	of pedals due to	strength in the	vehicle	8	3	3		with suitable FOS
	fatigue, bending,	brake pedals	in undesired					and constant testing
	and braking		circumstances					
			and it'll lead to					
			fatal accidents					
			to driver					
3)	Breakage of tie	Due to uneven	Steering	0	0	0	14	Usage of material
	rods	terrains in desert	failure;	7	2	1		with high resistance
		track	Safety of driver					to compression and
			and					tensile loads
			others					
			compromised					
4)	Brake failure due	All-wheel to rear	Acceleration	0	0	0	20	To ensure the leakage
	to high torque	wheel can't be	cannot be	5	2	2		of brake failure
		converted when	attained to the					doesn't occur
		desired	required level					
			in AWD					
5)	CVT belt failure	Accelerating	No power	0	0	0	36	Choose better belt
		while braking	transmission	9	2	2		and avoid
								accelerating while
								braking

4.4 DVP (DESIGN VALIDATION PLAN)

SL	Factors	Calculated value	Probable failure	validation
NO				
1	Top speed	55.25KmpH	The vehicle	Due to low power train
			doesn't reach	efficiency
			55.25Kmph	
2	Stopping distance	10.17m	The vehicle	Due to insufficient
			doesn't stop	pedal force
			within 10.17m	
3	Turning radius	3.12m	Less steer angle	Decreasing the toe out
				angle
4	Camber change rate	1.38	Handling quality	Damper adjustment
			will decrease if	
			CCR increases	
5	Wheel travel	15in	The jounce and	Adjustment of springs
			rebound will be	
			more	

International Journal of Advances in Scientific Research and Engineering (ijasre), Vol 4 (11), November - 2018

5 CONCLUSION

A plethora of case studies was collected before realizing the advancements and adopted features. On evaluating existing designs for various commercially available off-road vehicles, it became clear that an indigenous design could be employed in a typical vehicle build that also possesses features and technology that is commensurable in a commercial vehicle. The hypothesis is thereby justified by a practical implementation of the same. The results so obtained were deterministic and also futuristic in nature.

These results establish the facts such as an onboard drive change mechanism from an AWD to RWD, Dual suspension mode (Interchangeability from dependent to independent mode), Independent Braking system (Individual Wheel braking achieved using cutting-brake technology) and an Onboard Diagnostics Unit in the control system which is used for data acquisition and for remote monitoring of a vehicle using GPRS and GSM technologies.

6 NOMENCLATURE AND ABBREVIATIONS

CAD(Computer aided design), CAE(Computer aided engineering), FEA(Finite Element analysis), ANSYS, CATIA, Ackermann Condition, Turning Angle, Turning Radius, Kill Switch, Regulated Power Supply, Control System, Starter, Ignition Switch, BLE(Bluetooth Low energy) Controller, CAN(Controller area network) Network, Indicator, CPU, DFMEA(Design Failure mode effect analysis), DVP(Design validation plan), RPN(Risk priority number), Tubular-Chassis, Kerb Weight, IMU(Inertial momentum unit), RWD(Rear wheel drive), 4WD(Four wheel drive), AWD(All wheel drive), Brake disk, Centrifugal clutch, Torque Vectoring, Articulation, Dog Clutch, Cutting Brakes. [8] [3] [1] [7] [2]

7 **REFERENCES**

- [1] D. N. K. Giri, Automobile Mechanics, Khanna Publishers, 2016.
- [2] A. V. A. D. C. J. J. J. Shijil P, "DESIGN AND ANALYSIS OF SUSPENSION SYSTEM FOR AN ALL TERRAIN VEHICLE," International Journal of Scientific & Engineering Research, vol. 7, no. 3, pp. 2229-5518, 2016.
- [3] P. L. S. M. JBK Das, Kinematics of Machines, Bangalore: Sapna Book House.
- [4] D. L. M. William F. Milliken, Race car vehicle dynamics, Warrendale: U.S.A SAE International, 1995.
- [5] T. Takahashi, "Modelling, Analysis and improving control methods for vehicle dynamic behaviour (Overview)," *R&D Review of Toyota CRDL*, vol. 38, no. 4.
- [6] P. D. G. Rill, "Vehicle Dynamics," in *SAE International*, 2002.
- [7] J. C. Dixon, "Suspension analysis and Computation Geometry," 2009.
- [8] J. Rezza N, Vehicle Dynamics, Springer, 2014.
- [9] D. N. K. Giri, Automobile Technology, Khanna Publishers, 2015.
- [10] V. B. Bhandari, Design of machine elements 2, 2012.