Structural and Mechanical Properties of Chitosan Doped with Zirconium Oxide

Authors

  • Md. Sohel Sikder Physics Discipline, Khulna University, Khulna, Bangladesh
  • M. R. Rahman Physics Discipline, Khulna University, Khulna, Bangladesh
  • M. Al-Mamun Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh
  • M. S. S. Chowdhury Plasma Physics Division, Atomic Energy Centre, Dhaka, Bangladesh
  • M. M. Haque Materials Science Division, Atomic Energy Centre, Dhaka, Bangladesh

DOI:

https://doi.org/10.31695/IJASRE.2020.33852

Keywords:

Chitosan, Zirconium oxide, Ball milling, XRD, Vickers hardness

Abstract

Abstract

In this work, chitosan (CTS) powder has been doped with zirconium oxide (ZrO2) at different wt.% in order to improve the mechanical strength of the composites for biomedical applications. The composites have been prepared by ball milling method and the sintering has been done at three temperatures 100°C, 150°C and 180°C for 3 hours in air. The crystalline structure of the composites was confirmed by X-ray diffraction (XRD) pattern and the crystallite size of the composites decreases with increasing the percentage of ZrO2 and sintering temperature. The improvement of mechanical strength of the composites with the addition of ZrO2 in CTS polymer matrix has been investigated using micro-Vickers hardness tester and observed that the hardness of the prepared composite increased to 536 MPa when 90 wt.% CTS doped with 10 wt.% ZrO2 at 180°C of sintering temperature, demonstrating that the composites can be a potential candidate in bone tissue engineering.

 

References

Hirotaka, M., Toshihiro, K., Masayuki, N., & Minoru, U., “Preparation of bone like apatite composite for tissue engineering scaffold,” Science and Technology of Advanced Materials, 2005, vol. 6, pp. 48-53.

Rose, F. R. A. J., & Oreffo, R. O. C., “Bone tissue engineering: hope vs hype. Biochemical and Biophysical Research Communications,” 2002, vol. 292, pp. 1-7.

Du, C., Cui, F. Z., Zhang, W., Feng, Q. L., Zhu, X. D., & Groot, K. D., “Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. Journal of Biomedical Material Research Part A, 2000, vol. 50, pp. 518-527.

Kikuchi, M., Itoh, S., Ichinose, S., Shinomiya, K., & Tanaka, J., “Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro- and its biological reaction in vivo,” Biomaterials, 2001, vol. 22, pp. 1705-1711.

Raimondi, M. T., Moretti, M., Cioffi, M., Giordano, C., Lagana, F. K., & Pietrabissa, R., “The effect of hydrodynamic shear on 3D engineered chondrocyte systems subject to direct perfusion,” Biorheology, 2006, vol. 43, pp. 215-222.

Zhong Z. K., & Sun, X. Z. S., “Properties of soy protein isolate/polycaprolactone blends compatibilized by methylene diphenyl diisocyanate,” Polymer, 2001 vol. 42, pp. 6961-6969.

Kenawy, E.-R.S., Azaam, M.M., Saad-Allah, K.M., “Synthesis and antimicrobial activity of α-aminophosphonates containing chitosan moiety,” Arabian Journal of Chemistry, 2015 vol. 8, pp. 427–432.

Kumar, M.N., Muzzarelli, R.A., Muzzarelli, C., Sashiwa, H., Domb, A.J., “Chitosan chemistry and pharmaceutical perspectives,” Chemical Reviews, 2004, vol. 104, pp. 6017–6084.

Swetha, M., Sahithi, K., Moorthi, A., Srinivasan, N., Ramasamy, K., Selvamurugan, N., “Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering,” International Journal of Biological Macromolecules, 2010, vol. 47, pp. 1–4.

Agnihotri, S.A., Mallikarjuna, N.N., AminabhavI, T.M., “Recent advances on chitosan-based micro- and

nanoparticles in drug delivery. Journal of Controlled Release,” Official Journal of the Controlled Release

Society, 2004, vol. 100, pp. 5–28.

Danielsen, S., Strand, S., De Lange Davies, C., Stokke, B.T. (2005). Glycosaminoglycan destabilization of DNA-chitosan polyplexes for gene delivery depends on chitosan chain length and GAG properties. Biochimica et Biophysica Acta, 2005, vol. 1721,pp. 44–54.

Di Martino, A., Sittinger, M., Risbud, M.V., “Chitosan: a versatile biopolymer for orthopaedic tissue-engineering,” Biomaterials,2005. Vol. 26,pp. 5983–5990.

Ishihara, M., Nakanishi, K., Ono, K., Sato, M., Kikuchi, M., Saito, Y., Yura, H., Matsui, T., Hattori, H., Uenoyama, M., “Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process,” Biomaterials, 2002, vol. 23, pp. 833–840.

Vandevord, P.J., Matthew, H.W., Desilva, S.P., Mayton, L., Wu, B., Wooley, P.H., “Evaluation of the biocompatibility of a chitosan scaffold in mice,” J Biomed Mater Res, 2002, vol. 59, pp. 585– 590.

Gkioni, K., Leeuwenburgh, S. C., Douglas, T. E., Mikos, A. G., & Jansen, J. A., “Mineralization of hydrogels for bone regeneration,” Tissue Engineering Part B Reviews, 2010, vol. 16, pp. 577– 585.

Li, B. Q., Hu, Q. L., Qian, X. Z., Fang, Z .P., & Shen, J. C., “Bioabsorbable chitosan/hydroxyapatite composite rod for internal fixation of bone fracture prepared by in situ precipitation,” Acta Polymerica Sinica, 2002, vol. 6, pp. 828–833.

Wang, S., Hu, Y., Wang, Z., Yong, T., Chen, Z., & Fan, W., ‘Synthesis and characterization of polycarbonate/ABS/montmorillonite nanocomposites,” Polymer Degradation and Stability,2003, vol. 80, pp. 157–161.

Josset, Y., Oum’Hamed, Z., Zarrinpour, A., Lorenzato, M., Adnet, J. J., & Laurent- Maquin, D., “ Journal of Biomedical Material Research,” 1999, vol. 47, pp. 481–493.

Kar, S., Kaur, T., & Thirugnanam, A., “Microwave-assisted synthesis of porous chitosan–modified montmorillonite–hydroxyapatite composite scaffold,” International Journal of Biological Macromolecules, 2016, vol. 82, pp. 628-636.

Sollazzo, V., Pezzetti, F., Scarano, A., Piattelli, A., Bignozzi, C. A., & Massari, L., “Zirconium oxide coating improves implant osseointegration in vivo,” Dental Materials, 2008, vol. 24, pp. 357– 361.

Sultana, R., Yang, J. Z., & Hu, X. Z., “Deposition of micro-porous hydroxyapatite/ tricalcium phosphate coating on zirconia-based substrate,” Journal of the American Ceramic Society, 2012, vol. 4, pp. 1212-1215.

Ebru G, Dilay P, Cuney H, Unlu OA, Nurfer G, “Synthesis and characterization of chtiosan—MMT biocomposite systems,” Carbohyd Polym, 2007, vol. 67, pp.358

Marguerite R, “Chitin and chitosan: properties and application,” Prog Polym Sci, 2006, vol.31(7), pp.603–632

Julkapli MN, Akil MH, “X-ray powder diffraction (XRD) studies on kenaf dust filled chitosan bio-composites,” AIP Conf Proc, 2007, vol.11, pp. 989.

Uwe Holzwarth, Neil Gibson, “The Scherrer equation versus the ‘Debye-Scherrer equation,” Nature nanotechnology, 2011, vol. 6(9), pp.535-534.

Rajagopalan, Subramanian Ganesh Sundara Raman, S.K. Seshadri, “Influence of crystallite size on the hardness and fatigue life of steel samples coated with electrodeposited nanocrystalline Ni-W alloys,” Materials Letters, 2007 vol.61, pp.715-718.

Downloads

How to Cite

Md. Sohel Sikder, M. R. Rahman, M. Al-Mamun, M. S. S. Chowdhury, & M. M. Haque. (2020). Structural and Mechanical Properties of Chitosan Doped with Zirconium Oxide. International Journal of Advances in Scientific Research and Engineering (IJASRE), ISSN:2454-8006, DOI: 10.31695/IJASRE, 6(7), 55–60. https://doi.org/10.31695/IJASRE.2020.33852

Issue

Section

Articles