Experimental Study and Comparative Effects of Bean (Phaseolus vulgaris L.) crop residues and effective Microorganisms (EM) on the Fertilizer value of Coffee Pulp Compost

Authors

  • SIBOMANA Rémy Haguruka People’s University (UPH). Bujumbura, Burundi.
  • KABONEKA Salvator University of Burundi. P.O. Box 2940 Bujumbura, Burundi
  • BAKUNDUKIZE Nadine Haguruka People’s University (UPH), Bujumbura, Burundi
  • NIBASHIKIRE Cariton Haguruka People’s University (UPH), Bujumbura, Burundi
  • BUKOBERO Libère Haguruka People’s University (UPH), Burundi.
  • NIYONKURU Deogratias Haguruka People’s University (UPH), Bujumbura, Burundi
  • NTAKARUTIMANA Innocent Cooperative Society of Studies and Technical works (SCERT), Bujumbura, Burundi.
  • BARANTANDIKIYE Fébronie Farmer. Bukeye commune, Muramvya Province, Burundi
  • NSABUMUKIZA Adélaïde Farmer. Mbuye commune, Muramvya Province, Burundi
  • BARISESA Moïse Farmer. Bukeye commune, Muramvya Province, Burundi
  • NIYONZIMA Agrippine Farmer. Mbuye commune, Muramvya Province, Burundi
  • JAMUBANDI Francine Farmer. Mbuye commune, Muramvya Province, Burundi

DOI:

https://doi.org/10.31695/IJASRE.2021.34121

Keywords:

Coffee pulp, Compost, Accelerators, Residues, Bean Residues, Potato, Yield

Abstract

In order to evaluate the fertilizer potentials of the coffee pulp as compost, three field experiments were set up with bean (Phaseolus vulgaris L.) and potato (Solanum tuberosum L.). To that end, the fresh coffee pulp was composted with accelerators addition. Evaluated treatments in a Completely Randomized Block Design (CRBD) with 4 replicates were as follows : T1 = Coffee pulp (CP) alone ; T2 = CP + 1 L molasse + 1 L Effective Microorganisms (EM1) + 37 kg of dolomitic lime ; T3 = CP + 16.75 kg of bean residues (BR1) + 16.75 kg of soil (forest soil) ; T4 = CP + 2 L molasse + 2 L EM2 + 74 kg of dolomitic lime ; T5 = CP + 33.5 kg of bean residues (BR2) + 33.5 kg of soil (forest soil) ; T6 = Farm manure + 1.5 T/ha dolomitic lime + 200 kg/ha DAP+ 100 kg/ha KCl + 50 kg/ha Urea and T7 = Control (non amended/fertilised). In both the bean and the first potato (Victoria variety) experiments, recommended organo-mineral fertilization (T6) was not significantly different from either T4 (CP+EM2) or T5 (CP + BR2).  In the second potato (Mabondo) study, T6 (Farm Manure + 60-90-60) produced significantly higher yields than the other treatments (T7, T6, T5, and T4), which did not show any significant differences among them. Across the three field studies, treatments T4 (CP+EM2) and T5 (CP + BR2) are equivalent and substitutable. Nevertheless, being imported, EM is surely problematic with regard to cost, conservation, and manipulation. In that context, we contend that T5 (CP + BR2) is more accessible to farmers and could be widely adopted as a source of organic fertilizer. We then advance that this compost treatment (T5) is the one to be disseminated as a potential coffee pulp-based source of organic fertilizer in coffee-growing Burundi areas. We further propose to test the minerally-complemented T5 (CP+BR2+mineral fertilizers) against the currently recommended Farm Manure+mineral fertilizer applications for bean (18-46-0) and potato (60-90-60) crops. Such an experimental study would evaluate the substitutability of farm manure by CP compost boosted by bean residues addition.

References

Kasongo R., A. Verdoodi, P. Kanyankagete, G. Baert and E. Van Ranst. 2011. Coffee waste as an alternative fertilizer with soi improving properties for sandy soils in humid tropical environments. Soil Use and Management 27: 94-102.

Getachu E. G. and T. M. Beyene. 2020. The blooming of coffee industry: its waste problem and utilization through management option: A review

Sanchez G., E. J. Olguin and G. Mercado. 1998. Accelerated coffee pulp composting. Biodegradation Biodegradation 10(1): 35-41. Doi: 10.123/A: 1008340303142.

McAuley W. Sustainable Harvest. Relationship Coffee. July 17, 2012. 503-235-1119. Portland Oregon.

Zoca S. M., Chad J. Penn; C. A. Rosolem, A. R. Alves, L. O. Neto, M. M. Martins. 2014. Coffee processing residues as a soil potassium amendment. Int. Recycl Org Waste Agricult 3: 155-165.

Pandey, A., C.R. Soccol, P. Nigam, R. Mohan and S. Roussos. 2000. Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochemical Engineering Journal. Volume 6(2): 143-162. https:,doi.org/10.1016/s1369-703x (00)00084-x

Kumari A.C.R. and N. Devanna. 2017. Evaluation of physical and chemical properties of coffee pulp for its potentiality as soil fertilizer. Journal of Agroecology and Natural Resource Management 5(4): 388-390.

Bressani, R. and Brahan. 1980. Utilization of coffee pulp as animal feed. Ass. Sci. International du Café. Vol. I. Londres, p. 302-322.

Berecha, G.., F. Lenessa and M. Wakjira. 2011. Exploring the suitability of coffee pulp compost as growth media substitute in greenhouse production. International Jourlal of Agriculture Research 6: 255-267.

Ameca G. M., M. E. O. Cerviella, P. Z. Córdoba, A. D. Cruz, M. S. Hernandez and J. H. Haro. 2018. Chemical composition and antioxydant capacity of coffee pulp. Ciència e agrotecnologia 42 (3): 307-313.

Ulsido M.D. and M. Li. 2012. Effect of organic matter from coffee pulp compost on yield response of chichpeas (Cicer arietinum L.) in Ethiopia. Engineering for Rural Development 1339-1347. Jelgava 25-27.05.2016.

Murthy, P.S and M.M Naidu. 2012. Sustainable management of coffee industry by-products and value addition – a review. Resourc Conserv Recycl 66: 45-58.

Zhang Y. and Y. He. 2006. Co-composting solid swine manure with pine sawdust as organic substrate. Bioresource Technology 97(16): 2024-2031.

Yonatan, K., D. Solomon and T. Taye. 2011. Chemical composition and in-vitro digestibility of coffee pulp ensiled with effective microorganisms in Ethiopia. Livestock Research for Rural Development 23 (7).

Echeverria, M. and M. Nuti. 2017. Valorisation of the residues of coffee agro-industry: perspectives and limitations. Open Wast Manag J. 10: 13-22.

Dumas, J. and J., Chong. 2012. Coffee pulp compost: Chemical properties and distribution of humic substances. Journal of agriculture – University of Puerto Rico 96(1-2): 77-87. DOI: 10.46429/Jaupr.V96i1-2.247

El-Shafeyi A., M. Yehia, F. El-Naquib. 2008. Impact of effective micro-organisms compost on soil fertility and rice productivity and quality. Misr J. Ag. Eng. 25(3): 1067-1093.

Alexander, R. 2006. Expanding compost markets in the Glasgow and Clyde valley regions (Scotland). Biocycle 47 :51.

Formowitz B., F. Erlango, S. Okumoto, J. Müller and A. Buekert. 2007. The role of effective microrganisms in the composting of banana (Musa spp) residues. Journal of Plant Nutrition and Soil Science 170: 649-656.

Mayer J., S. Scheid, F. Widmer, A. Fliebach and H-R. Oberholzer. 2010. How effective are ‘Effective microorganisms’ (EM)? Results from a field study in temperate climate. Applied Soil Ecology

Muttalibn S. A. A., S. Norkhadijah, S. Ismail, S. M. Preveeba. 2016. Application of effective microorganisms (EM) in food waste composting: a review. Environmental Science. Corpus ID: 135407234.

Jusah M. L. C., L. A. Manaf and P. A. Latiff. 2013. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iranian Journal of Environmental Health Science and Engineering 10, 17. https://doi.org/10.1186/1735-2746-10-17.

Orozco, F., H. Cegarra, J. Trujillo and A. Roig. 1996. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biology and Fertility of Soils 22: 162-166.

Ogireddy S. D., S. Paul, D. Sarkar, R. S. Rajput, S. Singh, M. Pavihar, H. P. Parewa, S. Pal, H. B. Singh and A. Rakshit. 2019. Trichoderma: A part of possible answer towards crop residue dispersal. Journal of Applied and Natural Science 11(2): 516-523. Doi: 10.31518/janvs. V11i2.2090.

Van den Berghe. 1991. Rapport d’activités N° 2. Janvier-Octobre 1991. Facagro. Université du Burundi. 168 p.

Kaboneka, S., C. Kwizera, S. Nijimbere, W. Irakoze, P. Nsengiyumva, S. Ndihokubwayo and B. Habonimana. 2021. Yield responses of maize (Zea mays L.) and successsive potato (Solanum tuberosum L.) crops to maize stover co-composted with Calliandra calothyrsus Meisn green manure. International Journal of Advances in Scientific Research and Engineering (IJASRE). Volume 7(4): 1-15. April 2021.

Kaboneka, S., C. Kwizera, S. Nijimbere, W. Irakoze, P. Nsengiyumva, S. Ndihokubwayo and B. Habonimana. 2021. Direct and residual fertilizer values of maize (Zea mays L.) stover co-composted with Tithonia diversifolia (Hemsl.) A. Gray green manure. International Journal of Advances in Scientific Research and Engineering. Volume (7): 6-17. July 2021.

Rick, T.L., C.A. Jones and R.E. Engel. 2011. Green manure and phosphate rock effect on phosphorus availability in a northern Great Plains dryland organic cropping system. Organic agriculture 8: 81-90.

Glab T., A. Zabiński, U. Sadowiska, K. Gondek, M. Kopeć, M. Mierzwa-Hersztek and S. Tabor. 2018. Effects of co-composted maize, sewadge sludge and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma 315: 27-35.

Dzung N. A., T. T. Dzung and V. T. P. Khanh. 2013. Evaluation of coffee husk compost for improving soil fertility and sustainable coffee production in rural central highland of Vietnam. Resources and Environment 3 (4): 77-82. DOI: 10.5923/j/re.2013.0304.03

Barthod J., C. Rumpel and M. Dignac. 2018. Composting with additives to improve organic amendments. A review. Agron. Sustain. Dev. 38, 17. https://doi.org/10.1007/s13593-018-0491-9.

Torkashavand, A, M. 2010. Improvement of compost quality by addition of some amendments. Australian Journal of Crop Science 4(4): 252-257.

ISTEEBU, 2013-2018. Enquêtes Nationales Agricoles du Burundi (ENAB). Résultats de campagnes agricoles 2013-2018. Bujumbura.

Fening, J.O., N. Ewusi-Mensah and E.Y. Safo. 2010. Improving the fertilizer value of cattle manure for sustaining small holder crop production in Ghana. Journal of Agronomy 9 (3): 92-101.

Srikantha H. and E. J. Shiju. 2013. Coffee pulp waste management by different composting techniques. Asian Journal of Biochemical and Pharmaceutical Research 3 (3): 96-103.

Tessens E. and J. Gourdin. 1993. Critères d’interprétation des analyses pédologiques. Fiche Labo N° 19. ISABU. 36 p.

Kibiriti, C., S. Ndayiragije, J. Gourdin & P. Hollebosch.1986b. Détermination du pH, la conductivité et l’analyse de la matière organique. ISABU.35 p.

Nelson, D.W. & L.E. Sommers. 1982. Total carbon, organic carbon, and organic matter. In A.L. Page et al. (Ed.). Methods of soil analysis. Part 2. 2nd ed. Agronomy 9. ASA, Madison, WI.

Bremner, J.M. & C.S. Mulvaney. 1982. Nitrogen-Total. pp. 595-624. In A.L. Page et al. (Ed.). Methods of soil analysis. Part 2. 2nd ed. Agronomy 9. ASA, Madison, WI.

Kibiriti, C., S. Ndayiragije, J. Gourdin & P. Hollebosch.1986a. Analyse des bases échangeables, de la CEC et de l’acidité échangeable. ISABU. 33 p.

Zarcinas, B.A, B. Cartwright and L.R. Spouncer. 1987. Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Analy. 18: 131-146.

Nduwarugira, E., N. Ntukamazina, C. Ruraduma, B. Nijimbere, J.M.V. Niyoyankunze, B. Ndabashinze, S. Bizimana, B. Bigirimana, J. Nzeyimana et G. Hakizimana. 2018. Catalogue des variétés de haricot en diffusion au Burundi. ISABU. CIAT. PABRA. Syngeta Foundation for sustainable Agriculture and Seeds 2B Africa. 42 p.

Buysse, W., R. Stern and R. Coe. 2004. GenStat Discovery Edition for Everyday use. ICRAF. Nairobi, Kenya. 114 p.

Dagnélie, P., 1987. Théorie et méthodes statistiques, application agronomique. Volume 2. Presses agronomiques de Gembloux, Belgique. 463 p.

Shemekite F., M. Gomez-Brandon, I.H. Frankle-Whittle, B. Praehauser, H. Insam and F. Assefa. 2014. Coffe husk composting: an investigation of the process using molecular and non-molecular tools waste management. Volume 34(3): 642-652.

Mupondi, L.T., P.N.S Mnkeni and M.O. Brutsch. 2006. The effects of goat manure, sewage sludge and effective microorganisms on the composting of pin bark. Compost Science & Utilisation 14 (3): 201-210.

Motsara, M.R. and R.N. Roy. 2008. Guide to Laboratory establishment for plant nutrient analysis. FAP Fertilizer and Plant Nutrition Bulletin. Food and Agriculture Organization, Rome, Italy.

Lipford, D. The debate over organic vs chemical fertilizers. Today’s Homeowner. Fall 2020.

Kassa H., H. Suliman and T. Wookayew. 2011. Evaluation of composting process on quality of compost from coffee by-products (Coffee husk and pulp). Ethiopia Journal of Environmental Studies and Management 4(4): 8-12

Downloads

How to Cite

SIBOMANA Rémy, KABONEKA Salvator, BAKUNDUKIZE Nadine, NIBASHIKIRE Cariton, BUKOBERO Libère, NIYONKURU Deogratias, NTAKARUTIMANA Innocent, BARANTANDIKIYE Fébronie, NSABUMUKIZA Adélaïde, BARISESA Moïse, NIYONZIMA Agrippine, & JAMUBANDI Francine. (2021). Experimental Study and Comparative Effects of Bean (Phaseolus vulgaris L.) crop residues and effective Microorganisms (EM) on the Fertilizer value of Coffee Pulp Compost. International Journal of Advances in Scientific Research and Engineering (IJASRE), ISSN:2454-8006, DOI: 10.31695/IJASRE, 7(12), 45–56. https://doi.org/10.31695/IJASRE.2021.34121

Issue

Section

Articles