Vegetable Yield responses to Coffee pulp Co-composted with Effective Microorganisms (EM) and bean (Phaseolus vulgaris L.) Crop Residues


  • SIBOMANA Rémy Haguruka People’s University (UPH), P.O. Box 2695, Bujumbura, Burundi.
  • KABONEKA Salvator Department of Environment Sciences and Technologies, University of Burundi, Burundi
  • BAKUNDUKIZE Nadine Haguruka People’s University (UPH), Bujumbura, Burundi.
  • NIBASHIKIRE Cariton Haguruka People’s University (UPH), Bujumbura, Burundi
  • BUKOBERO Libère Haguruka People’s University (UPH), Bujumbura, Burundi
  • NIYONKURU Deogratias Haguruka People’s University (UPH), Burundi
  • NTAKARUTIMANA Innocent 3Cooperative Society of Studies and Technical works , Burundi
  • BARANTANDIKIYE Fébronie4 Farmer. Bukeye commune, Muramvya Province, Burundi
  • NSABUMUKIZA Adélaïde Farmer. Mbuye commune, Muramvya Province, Burundi
  • BARISESA Moïse Farmer. Bukeye commune, Muramvya Province, Burundi
  • NIYONZIMA Agrippine Farmer. Mbuye commune, Muramvya Province, Burundi
  • JAMUBANDI Francine Farmer. Mbuye commune, Muramvya Province, Burundi



Coffee Pulp, Co-Compost, Bean Residues, Cabbage, Egg Plant, Yield


In a follow-up study to experiments conducted in order to evaluate the fertilizer potentials of coffee, pulp composts enhanced with (micro) biological accelerators on potato (Solanum tuberosum L.) and bean (Phaseolus vulgaris L.) crops, a triple experiment was conducted on two cabbage (Brassica oleracea L.) varieties (Mukasi and Kidodo) and on eggplant (Solanum melongena L.). Tested treatments were: T1=Coffee pulp (CP) alone, T4=CP + 2 L molasse + 2 L EM + 74 kg of dolomitic lime (CP+EM2), T5= CP + 33.5 kg of bean residues (BR) + 33.5 kg of soil (forest soil) (CP+BR2), T6=Recommended organo-mineral fertilizer application for cabbage and T7=Control (non amended/fertilised). The first experiment with the Mukasi cabbage (Brassica oleracea L.) variety showed that CP+EM2 (T4) and CP+BR2 (T5) gave statistically equivalent yields. In the second experiment with the cabbage (Kidodo variety), fresh head yields followed the order: T5 (CP + BR2) ≥ T6 (organo-mineral fertilizer) ≥ T1 (CP alone) ≥ T4 (CP+ EM2) ≥ T7 (Control), indicating the superiority of the coffe pulp co-composted with bean (Phaseolus vulgaris L.) residues. Overall, CP+EM2 treatment (T4) did not perform well, particularly with Kidodo variety. The low performance of CP+EM2 (T4) was confirmed by the eggplant experiment, in which the highest yield was registered with the CP compost alone (T1), followed by CP + BR2 (T5), the control treatment (T7), and lastly by CP + EM2 (T4). In accordance with the previous potato (Solanum tuberosum L.) and bean (Phaseolus vulgaris L.) experiments, we confirm the consistent agronomic superiority of the CP+BR2 treatment (T5) over other tested treatments, including the costly inorganic treatment (T6). This conclusive statement is enhanced by the fact that the CP+BR2 treatment (T5) is more accessible and more reproducible by farmers (because locally available), in comparison with the CP+EM2 treatment (T4). The latter compost treatment is more problematic with regard to cost of acquisition (importation), conservation, manipulation and availability to poor rural Burundi farmers.


Orozco, F., H. Cegarra, J. Trujillo and A. Roig. 1996. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients. Biology and Fertility of Soils 22 : 162-166.

CTA, 1986. Compost from coffee pulp. Spore 4. Wageningen, The Netherlands.

Dzung, N.A., T. T. Dzung and V. T. P. Khanh. 2013. Evaluation of coffee husk compost for improving soil fertility and sustainable coffee production in rural central highland of Vietnam. Resources and Environment 3 (4) : 77-82. DOI : 10.5923/j/re.2013.0304.03

Gemechu, G.E. and T. M. Beyene. 2020. The blooming of coffee industry: its waste problem and utilization through management option: A review.

Murthy, P.S, M.M Naidu. 2012. Sustainable management of coffee industry by-products and value addition – a review. Resourc Conserv Recycl 66 : 45-58.

Echeverria, M. and M. Nuti. 2017. Valorisation of the residues of coffee agro-industry: perspectives and limitations. Open Wast Manag J. 10 : 13-22.

Muttalibn, S. A. A., S. Norkhadijah, S. Ismail and S. M. Preveeba. 2016. Application of effective microorganisms (EM) in food waste composting: a review. Environmental Science. Corpus ID : 135407234.

Sanchez, G., E. J. Olguin and G. Mercado. 1998. Accelerated coffee pulp composting. Biodegradation 10: 35-41.

Formowitz B., F. Erlango, S. Okumoto, J. Müller and A. Buekert. 2007. The role of effective microrganisms in the composting of banana (Musa spp) Residues. Journal of Plant Nutrition and Soil Science 170 : 649-656.

Ogireddy, S.D. S. Paul, D. Sarkar, R.S. Rajput, S. Singh, M. Pavihar, H. P. Parewa, S. Pal, H. B. Singh and A. Rakshit. 2019. Trichoderma: A part of possible answer towards crop residue dispersal. Journal of Applied and Natural Science 11(2) : 516-523. Doi : 10.31518/janvs. V11i2.2090.

Kaboneka, S., C. Kwizera, S. Nijimbere, W. Irakoze, P. Nsengiyumva, S. Ndihokubwayo and B. Habonimana. 2021. Yield responses of maize (Zea mays L.) and successsive potato (Solanum tuberosum L.) crops to maize stover co-composted with Calliandra calothyrsus Meisn green manure. International Journal of Advances in Scientific Research and Engineering (IJASRE). Volume 7(4) : 1-15. April 2021.

Kaboneka, S., C. Kwizera, S. Nijimbere, W. Irakoze, P. Nsengiyumva, S. Ndihokubwayo and B. Habonimana. 2021. Direct and residual fertilizer values of maize (Zea mays L.) stover co-composted with Tithonia diversifolia (Hemsl.) A. Gray green manure. International Journal of Advances in Scientific Research and Engineering. Volume (7) : 6-17. July 2021.

Wang, P., C. Changa, M. Watson, W. Dick, Y. Chen and H.A Hoitink. 2004. Maturity indices for composted dairy and pig manure. Soil Biol. Biochem 36: 767-776.

Hoang, G., T. Mishio and M. K. Shima. 2020. Evaluation of compost from on-farm composting of coffee pulp using wood chips and air flow. Journal of Biobased Materials and Bio energy 14(3): 408-413. DOI:

Kassegn, G., K. Hilnf, G. Gebregziabher, G. Degefe, B. Kumera. 2015. Physicochemical characterization and microbial identification of compost produced from municipal solid waste in Shewa Robit town, Ethiopia. Res. J. Agric Environ Sci 2 : 25-30

Zhang, Y. and Y. 2006. Co-composting solid swine manure with pine sawdust as organic substrate. Bioresource Technology 97(16) : 2024-2031.

Nekesa A.O., J.R. Okalebo, J.R. Kimetto. 2007. Adoption of leguminous trees/shrubs, compost and farmyard manure (FYM) as alternatives to improving soil fertility in Trans Nzora District-Kenya. Advances in Integrated Soil fertility management in sub-saharan Africa: Challenges and Opportunities. 955-960.

Zai, A.K.E. T. Horiuchi and T. Matsui. 2008. Effects of compost and green manure of pea and their combinations with chicken manure and rapeseed oil residue on soil fertility and nutrient uptake in wheat-rice cropping system. African Journal of agricultural Research 3 (9) : 633-639.

Glab, T., A. Zabiński, U. Sadowiska, K. Gondek, M. Kopeć, M. Mierzwa-Hersztek and S. Tabor. 2018. Effects of co-composted maize, sewadge sludge and biochar mixtures on hydrological and physical qualities of sandy soil. Geoderma 315 : 27-35.

Kalantari, S., M.M. Ardalan, H.A. Aliklani & M. Shorafa. 2011. Comparison of compost and vermicompost of yard leaf manure and inorganic fertilizer on yield of corn. Communications in Soil Science and Plant Analysis 42 : 123-131.

Hachicha, S., M. Chtourou, K. Medhioub, E. Ammar. 2006. Compost of poultry manure and olive mill wastes as an alternative fertilizer. Agron. Sustain. Dev. 26 : 135-142.

Dadi, D., G. Daba, A. Beyene, P. Luis and B. Van der Bruggen. 2019. Composting and co-composting of coffee husk and pulp with a source-separated municipal solid wastes. International Journal of Recycling of organic waste in Agriculture 8 : 263-177.

Mupondi, L.T., P.N.S Mnkeni and M.O. Brutsch. 2006. The effects of goat manure, sewage sludge and effective microorganisms on the composting of pin bark. Compost Science & Utilisation 14 (3) : 201-210.

Jusah, M. L. C., L. A. Manaf and P. A. Latiff. 2013. Composting of rice straw with effective microorganisms (EM) and its influence on compost quality. Iranian Journal of Environmental Health Science and Engineering 10, 17.

Ulsido, M.D. and M. Li. 2012. Effect of organic matter from coffee pulp compost on yield response of chichpeas (Cicer arietinum L.) in Ethiopia. Engineering for Rural Development 1339-1347. Jelgava 25-27.05.2016

El-Shafeyi A., M. Yehia, F. El-Naquib. 2008. Impact of effective micro-organisms compost on soil fertility and rice productivity and quality. Misr J. Ag. Eng. 25(3) : 1067-1093.

Mar, T.T, E.P. Kyaw, T.M. Lynn, Z.K. Latt and S.S Yu. 2018. The effects of compost based biofertilizer on egg plant (Solanum melongena L.) growth. Int. J. Plant Biol Res 6 (5) : 1099.

Nurhidayati, N., U. Ali and I. Murwani. 2016. Yield and quality of cabbage (Brassica oleracea L. var Capitata) under organic growing media using vermicompost and earthworm Pontoscolex corethrurus Inoculation. Agriculture and Agricultural Science Procedia. Vol 11: 5-13. https:/ 2016.12.002.

Kasongo, R., A. Verdoodi, P. Kanyankagete, G. Baert and E. Van Ranst. 2011. Coffee waste as an alternative fertilizer with soil improving properties for sandy soils in humid tropical environments. Soil Use and Management 27= 94-102.

Zoca, S.M. Chad J. Penn; Ciro Antonio Rosolem, Alexandre Ricardo Alves, Leontino Oliveira Neto, Maximila Miranda Martins. 2014. Coffee processing residues as a soil potassium amendment. Int. Recycl Org Waste Agricult 3: 155-165.

Barthod J., C. Rumpel and M. Dignac. 2018. Composting with additives to improve organic amendments. A review. Agron. Sustain. Dev. 38, 17.

Zuraini, Z., G. Sanjay and M. Noresah. 2010. technology for water quality restoration and potential for sustainable water resources and management. Proceedings of the International Congress on Environmental Modelling and Software Modelling for the Environment, Sake, Fifth Biennal Meeting held between 5th-8th July 2010. Ontario, Canada.

Barral, M.T. and R. Paradelo. 2011. A review of the use of phytotoxicity as a compost quality indicator. Dynamic Soil, Dynamic Plant 5(2) : 36-44.

Zucconi, F., A. Pera, M. Forte, M. DeBertoldi. 1981. Evaluating toxicity of immature compost. BioCycle (USA) 22 (2) : 54-57.

Sibomana, R., S. Kaboneka, N. Bakundukize, C. Nibashikire, L. Bukobero, D. Niyonkuru, I. Ntakarutimana, F. Barantandikiye, A. Nsabumukiza, M. Barisesa, A. Niyonzima and F. Jamubandi. 2021. Experimental Study & Comparative effects of bean (Phaseolus vulgaris L.) crop residues and effective microorganims (EM) on the fertilizer value of coffee pulp compost. International Journal of Advances in Scientific Research and Engineering (IJASRE), Volume 7,(12), 45-56, Dec-2021, DOI:

Buysse, W., R. Stern and R. Coe. 2004. GenStat Discovery Edition for Everyday use. ICRAF. Nairobi, Kenya. 114 p.

Dagnélie, P., 1987. Théorie et méthodes statistiques, application agronomique. Volume 2. Presses agronomiques de Gembloux, Belgique. 463 p.


How to Cite

SIBOMANA Rémy, KABONEKA Salvator, BAKUNDUKIZE Nadine, NIBASHIKIRE Cariton, BUKOBERO Libère, NIYONKURU Deogratias, NTAKARUTIMANA Innocent, BARANTANDIKIYE Fébronie4, NSABUMUKIZA Adélaïde, BARISESA Moïse, NIYONZIMA Agrippine, & JAMUBANDI Francine. (2022). Vegetable Yield responses to Coffee pulp Co-composted with Effective Microorganisms (EM) and bean (Phaseolus vulgaris L.) Crop Residues. International Journal of Advances in Scientific Research and Engineering (IJASRE), ISSN:2454-8006, DOI: 10.31695/IJASRE, 8(1), 11–18.