Analysis of the ZnO/Cu2O and CdSe/Cu2O Thin Film Hetero-structure Electrode for Photo Electrochemical Solar Cell Applications

Authors

  • M. Abdurrahman Faculty of Natural Science Federal University, Jigawa State, Nigeria
  • F.W Burari Faculty of Natural science AbubakarTafawa Balewa University, Nigeria
  • O.W Olasoji Faculty of Natural science AbubakarTafawa Balewa University, Nigeria

DOI:

https://doi.org/10.31695/IJASRE.2022.8.4.10

Keywords:

Photo Electrochemical, Thermal Oxidation, Chemical Etching

Abstract

This paper proposes an economical route to the production of CdSe/Cu2O and ZnO/Cu2O based on commercial ZnO, CdSe corpuscle. The deposition of CdSe thin films was prepared by partial thermal oxidation method, Powder Vaporization method, and microwave oven method on the cleaned Cu2O substrate at room temperature. The solar cell fabrication process is greatly simplified by this method and opens a door in the direction of inexpensive techniques based on saleable available materials. The results show that the solar cell based on the mixture of CdSe/Cu2O has electron transportability, better light absorption, and a high power conversion efficiency (PCE) of 0.7 was obtained. These materials have been characterized using FTIR, at which numerous peaks are present in the sample, and were assessed in detail. Multiple current-voltage characteristic curves were plotted, An open-circuit voltage VOC, a short circuit current Isc, and the maximum power points Pmax were also noted. This work throws off more light in Enhancing the photoresponse of the electrode in both solar H2 generation and photoelectrochemical solar cell.

References

Y. Wu, C. Wadia, W. Ma, B. Sadtler, A.P. Alivisatos, Nano Lett. 8, 2551–2555 (2008)

R. Gangadharan, V. Jayalakshmi, J. Kalaiselvi, S. Mohan, R. Murugan, B. Palanivel, J. Alloys Comp. 359, 22–26 (2003)

P.P. Hankare A.D. Jadhav,V.M. Bhuse,A.S.Khomane, K.M. Garadkar Mat. Chem and Physics 80(2003)102-107

J.S. Jie,W.J. Zhang, Y. Jiang, S.T. Lee, Single-crystal CdSenanoribbon field-effect transistors and photoelectric applications, Appl. Phys. Lett. 89 (1–3) (2006), 133118.R.C.

M.D. McCluskey, S.J. Jokela, Defects in ZnO, J. Appl. Phys. 106 (2009), 071101, https://doi.org/10.1063/1.3216464.

Z.-L. Tseng, C.-H.Chiang, C.-G.Wu, Surface engineering of ZnO thin flm for high effciency planar perovskite solar cells, Sci. Rep. 5 (2015) 13211, https://doi. org/10.1038/srep13211.

N. Asima, K. Sopiana, S. Ahmadib, K. Saeedfarcd, M.A. Alghoula, O. Saadatiana, S.H. Zaidia, A review on the role of materials science in solar cells, Renew. Sustain. Energy Rev. 16 (2012) 5834.

R.N. Briskman, A study of electrodeposited cuprous oxide photovoltaic cells, Sol. Energy Mater. Sol. Cells 27 (1992) 361.

T. Minami, Y. Nishi, T. Miyata, J. Nomoto, High-efficiency oxide solar cells with ZnO/Cu2O heterojunction fabricated on thermally oxidized Cu2O sheets, Appl. Phys. Express 4 (2011) 062301.

R.L.Z. Hoye, R.E. Brandt, Y. Ievskaya, S. Heffernan, K.P. Musselman, T. Buonassisi, J.L. MacManus-Driscoll, Perspective: maintaining surface-phase purity is key to efficient open air fabricated cuprous oxide solar cells, APL Mater. 3 (2015) 020901.

B.K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P.J. Klar, T. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller, C. Ronning, Binary copper oxide semiconductors: from materials towards devices, Phys. Status Solidi B 249 (2012) 1487–1509.

C. Xiang, G.M. Kimball, R.L. Grimm, B.S. Brunschwig, H.A. Atwater, N.S. Lewis, 820 mV open-circuit voltages from Cu2O/CH3CN junctions, Energy Environ. Sci. 4 (2011) 1311–1318.

C. Wadia, A.P. Alivisatos, D.M. Kammen, Materials availability expands the opportunity for large-scale photovoltaics deployment, Environ. Sci. Technol. 43 (2009) 2072–2077.

A.E. Rakhshani, Preparation, characteristics and photovoltaic properties of cuprous oxide—a review, Solid-State Electron. 29 (1986) 7–17.

S. Ruhle, H.N. Barad, Y. Bouhadana, D.A. Keller, A. Ginsburg, K. Shimanovich, K. Majhi, R. Lovrincic, A.Y. Anderson, A. Zaban, Combinatorial solar cell libraries for the investigation of different metal back contacts for TiO2–Cu2O hetero-junction solar cells, Phys. Chem. Chem. Phys. 16 (2014) 7066–7073. 722 W. Niu et al. / Solar Energy Materials & Solar Cells 144 (2016) 717–723

J. Deuermeier, J. Gassmann, J. Brotz, A. Klein, Reactive magnetron sputtering of Cu2O: dependence on oxygen pressure and interface formation with indium tin oxide, J. Appl. Phys. 109 (2011).

S. Eisermann, A. Kronenberger, A. Laufer, J. Bieber, G. Haas, S. Lautenschläger, G. Homm, P.J. Klar, B.K. Meyer, Copper oxide thin films by chemical vapor deposition: synthesis, characterization and electrical properties, Phys. Status Solidi A 209 (2012) 531–536.

Y.S. Lee, D. Chua, R.E. Brandt, S.C. Siah, J.V. Li, J.P. Mailoa, S.W. Lee, R.G. Gordon, T. Buonassisi, Atomic layer deposited gallium oxide buffer layer enables 1.2 V open-circuit voltage in cuprous oxide solar cells, Adv. Mater. 26 (2014) 4704–4710.

K.P. Musselman, A. Marin, L. Schmidt-Mende, J.L. MacManus-Driscoll, Incompatible length scales in nanostructured Cu2O solar cells, Adv. Funct. Mater. 22 (2012) 2202–2208.

T. Minami, Y. Nishi, T. Miyata, Effect of the thin Ga2O3 layer in nþ-ZnO/nGa2O3/p-Cu2O heterojunction solar cells, Thin Solid Films 549 (2013) 65–69.

A. Mittiga, E. Salza, F. Sarto, M. Tucci, R. Vasanthi, Heterojunction solar cell with 2% efficiency based on a Cu2O substrate, Appl. Phys. Lett. 88 (2006).

T. Minami, T. Miyata, Y. Nishi, Cu2O-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized Cu2O sheet structure, Sol. Energy 105 (2014) 206–217.

T. Minami, Y. Nishi, T. Miyata, Heterojunction solar cell with 6% efficiency based on an n-type aluminum–gallium–oxide thin film and p-type sodiumdoped Cu2O sheet, Appl. Phys. Express 8 (2015) 022301.

G.H.A. Therese, P.V. Kamath, Electrochemical synthesis of metal oxides and hydroxides, Chem. Mater. 12 (2000) 1195–1204.

C. Malerba, F. Biccari, C. Leonor Azanza Ricardo, M. D’Incau, P. Scardi, A. Mittiga, Absorption coefficient of bulk and thin film Cu2O, Sol. Energy Mater. Sol. Cells 95 (2011) 2848–2854.

J. Robertson, S.J. Clark, Limits to doping in oxides, Phys. Rev. B 83 (2011) 075205.

C.M. McShane, K.-S. Choi, Junction studies on electrochemically fabricated p–n Cu2O homojunction solar cells for efficiency enhancement, Phys. Chem. Chem. Phys. 14 (2012) 6112–6118.

. N.H. Ke, P.T.K. Loan, D.A. Tuan, H.T. Dat, C.V. Tran, L.V. T. Hung, The characteristics of IGZO/ZnO/Cu2O:Na thin film solar cells fabricated by DC magnetron sputtering method, J. Photochem. Photobiol. A: Chem. 349, 100 (2017)

. C. de Melo, M. Jullien, Y. Battie, A. En Naciri, J. Ghanbaja, F. Montaigne, J.F. Pierson, F. Rigoni, N. Almqvist, A. Vomiero et al., Semi-Transparent p-Cu2O/n-ZnONanoscale-Film Heterojunctions for Photodetection and Photovoltaic Applications, ACS Appl. Nano Mater. 2, 4358 (2019)

. J. Kaur, O. Bethge, R.A. Wibowo, N. Bansal, M. Bauch, R. Hamid, E. Bertagnolli, T. Dimopoulos, All-oxide solar cells based on electrodeposited Cu2O absorber and atomic layer deposited ZnMgO on precious-metal-free electrode, Solar Energy Mater. Solar Cells 161, 449 (2017)

. M.H. Tran, J.Y. Cho, S. Sinha, M.G. Gang, J. Heo, Cu2O/ZnO heterojunction thin-film solar cells: the effect of electrodeposition condition and thickness of Cu2O, Thin Solid Films 661, 132 (2018)

. T. Kosugi, S. Kaneko, Novel Spray-Pyrolysis Deposition of Cuprous Oxide Thin Films, J. Am. Ceram. Soc. 81, 3117 (1998)

. R. David Prabu, S. Valanarasu, V. Ganesh, M. Shkir, S. AlFaify, A. Kathalingam, Investigation of molar concentration effect on structural, optical, electrical, and photovoltaic properties of spray-coated Cu2O thin lms, Surface Interface Anal. 50, 346 (2018)

. Musa A.O, (2010). “Principles of photovoltaic Energy Conversion”, Ahmadu Bello, Zaria University press, Samaru, Zaria.

. Zhang Q, Zhang K, Xu D, Yang G, Huang H, Nie F, Liu C, Yang S (2014) CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progr Mater Sci. 60:208–337

. Xu H, Wang W, Zhu W (2006) Shape evolution and sizecontrollable synthesis of Cu2O octahedra and their morphology dependent photocatalytic properties. J PhysChem B 110:13829–13834

Musa, A.O.; Akomolafe, T. & Carter, M.J. (1998). Production of Cuprous Oxide, a Solar Cell Material, by Thermal Oxidation and a Study of Its Physical and Electrical Properties. Solar Energy Materials and Solar Cells, Vol.51, No.3-4, (February 1998), pp. 305-316, ISSN 0927-0248

Lee, Y.H.; Leu, I.C.; Chang, S.T.; Liao, C.L. & Fung, K.Z. (2004). The Electrochemical Capacities and Cycle Retention of Electrochemically Deposited Cu2O Thin Film Toward Lithium. ElectrochimicaActa, Vol.50, No.2-3, (November 2004), pp. 553–559, ISSN 0013-4686

Akimoto, K.; Ishizuka, S.; Yanagita, M.; Nawa, Y.; Paul, G. K. & Sakurai, T. (2006).Thin Film Deposition of Cu2O and Application for Solar Cells.Solar Energy, Vol. 80, No.6, (June 2006), pp. 715–722, ISSN 0038-092X

Nozik, A.J. (1978). Photoelectrochemistry: Applications to Solar Energy Conversion. Annual Review of Physical Chemistry, Vol.29, No.1, (October 1978), pp. 189-222, ISSN 0066- 426X

Tang, Y.; Chen, Z.; Jia, Z.; Zhang, L. & Li, J. (2005). Electrodeposition and Characterization of Nanocrystalline Films Cuprous Oxide Thin Films on TiO2. Materials Letters, Vol.59, No.4, (February 2005), pp. 434–438, ISSN 0167-577X

Grozdanov, I. (1994). Electroless Chemical Deposition Technique for Cu2O Thin Films. Materials Letters, Vol.19, No.5-6, (May 1994), pp. 281–285, ISSN 0167-577X

Siripala, W., Perera, L.D.R.D., De Silva, K.T.L.; Jayanetti, J.K.D.S. &Dharmadasa, I.M. (1996). Study of Annealing Effects of Cuprous Oxide Grown by Electrodeposition Technique.Solar Energy Materials and Solar Cells, Vol.44, No.3, (November 1996), pp. 251–260, ISSN 0927-0248

Xue, J. &Dieckmann, R. (1990). The Non-Stoichiometry and the Point Defect Structure of Cuprous Oxide (Cu2-δO).Journal of Physics and Chemistry of Solids, Vol. 51, No.11, pp. 1263-1275, ISSN 0022-3697

Downloads

How to Cite

M. Abdurrahman, F.W Burari, & O.W Olasoji. (2022). Analysis of the ZnO/Cu2O and CdSe/Cu2O Thin Film Hetero-structure Electrode for Photo Electrochemical Solar Cell Applications. International Journal of Advances in Scientific Research and Engineering (IJASRE), ISSN:2454-8006, DOI: 10.31695/IJASRE, 8(4), 123–132. https://doi.org/10.31695/IJASRE.2022.8.4.10

Issue

Section

Articles